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Preface

This reading note is mainly based on the perturbation part of Daniel Baumann’s textbook
Cosmology and Viatcheslav Mukhanov’s textbook Physical Foundation of Cosmology

For convenience, We set
c = ℏ = kB = 1

We use the metric with signature

(−,+,+,+)

We use the notation

µ, ν, ρ, λ, · · · = 0, 1, 2, 3

i, j, k, l, · · · = 1, 2, 3
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1 The Homogeneous Universe

1.1 The FRW Metric

The FRW metric

ds2 = −dt2 + a(t)2(
1

1− kr2
dr2 + r2dθ2 + r2 sin2 θdϕ2) (1.1)

The redshift parameter

z + 1 =
λ0

λ1

=
a(t0)

a(t1)
(1.2)

The conformal time
adη = dt (1.3)

1.2 Friedmann Equation

The Einstein equation
Gµν = 8πGTµν (1.4)

The temporal component of the Einstein equation gives

(
ȧ

a
)2 +

K

a2
=

8πG

3
ρ (1.5)

and the the spatial components give

2
ä

a
+ (

ȧ

a
)2 +

K

a2
= −8πGp

ä

a
= −4πG

3
(ρ+ 3p) (1.6)

1.3 Equation of State

Energy density ρ, pressure P
P = wρ (1.7)

Dust: w = 1
3

Matter: w = 0

Vacuum: w = −1
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We assume that the fluid is at rest in the preferred frame of the universe, meaning that
Uµ = (1, 0, 0, 0) in the FRW coordinates. And we have

ρ̇+ 3H(ρ+ p) = 0 (1.8)

ρ̇

ρ
+ 3(1 + w)

ȧ

a
= 0 (1.9)

Using a0 = 1, we may solve it and get

ρ = ρ̄a−3(1+w) (1.10)

1. For dust, w = 0 and so ρm ∝ a−3

2. For radiation, w = 1
3

and so ρm ∝ a−4

3. For vacuum, dark energy or cosmologcial constant, w = −1 and so ρΛ = Const

1.4 Density Parameter

Set Λ = 0, K = 0 and solve the Friedmann equation (1.5), we have

ρc =
3H2

8πG
(1.11)

Define the density parameter
Ω :=

ρ

ρc
(1.12)

Then we can rewrite the Friedmann equation (1.5) as

Ω− 1 =
K

a2H2
(1.13)

We divide the density into its matter, radiation, and vacuum components ρ = ρm+ ρr + ρΛ,
and likewise for the density parameter

Ω = Ωm + Ωr + ΩΛ (1.14)

where
Ωm :=

ρm
ρc

Ωr :=
ρr
ρc

ΩΛ :=
ρΛ
ρc

:=
Λ

3H2

Define
ΩK = − K

H2
(1.15)

and we may find
Ωm + Ωr + ΩΛ + ΩK = 1 (1.16)
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We can now write the Friedmann equation (1.5) as

H2 =
8πG

3
(ρm + ρr + ρΛ)−

K

a2

=
H2

0

ρc
(ρm0a

−3 + ρr0a
−4 + ρKa

−2 + ρΛ)

= H2
0 (Ωr0a

−4 + Ωm0a
−3 + ΩK0a

−2 + ΩΛ0)

so that H can be evaluated as a function of a

H(a) = H0

√
Ωr0a−4 + Ωm0a−3 + ΩK0a−2 + ΩΛ0 (1.17)
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2 Newtonian Perturbation Theory

Newtonian perturbation theory is used at sub-horizon scale, and relativistic perturbation
theory is used at super-horizon and at-horizon scale.

2.1 Backgroud and Perturbations

Continuty equation,Euler equation, entropy conservation, poisson equation and the equation
of state(ref:Mukhanov)

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)

∂v

∂t
+ (v · ∇)v +

∇p

ρ
+∇ϕ = 0 (2.2)

∂S

∂t
+ (v · ∇)S = 0 (2.3)

∇2Φ = 4πGρ (2.4)

P = P (ρ, S) (2.5)

Perturbation(Homogeneous + Perturbation)

ρ(t, r) = ρ̄(t) + δρ(t, r)

v(t, r) = v̄(t) + δv(t, r) = δv(t, r)

P (t, r) = P̄ (t) + δp(t, r)

Φ(t, r) = Φ̄(t) + δΦ(t, r)

S(t, r) = S̄(t) + δS(t, r)

(2.6)

Subsituting the perturbations into the equation and keeping the linear terms only

∂δρ

∂t
+ ρ̄∇ · (δv) = 0 (2.7)

∂δv

∂t
+

1

ρ̄
∇δP +∇δΦ = 0 (2.8)

∂δS

∂t
= 0 (2.9)

∇2δΦ = 4πGδρ (2.10)

δP = c2sδρ+ σδS (2.11)

where cs is the sound speed. All the five equations lead us to the linear equation of δρ

∂2δρ

∂t2
− c2S∇2δρ− 4πGρ̄δρ = σ∇2δS (2.12)
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For convenience, we can always analyse the perturbations in Fourier space

δρ(x, t) =
1

(2π)3/2

∫
d3k δρ(k, t)eik·x (2.13)

Adiabatic Perturbations

We assume that the entropy perturbations are absent, δS = 0. When we analyse the pertur-
bations in Fourier space, (2.12) becomes

¨δρk + (k2c2S − 4πGρ̄)δρk = 0 (2.14)

which have two independent solutions

δρk = Aeiω(k)t + Ae−iω(k)t (2.15)

[ω(k)]2 = k2c2s − 4πGρ̄ (2.16)

Defining the Jeans length as

λJ =
2π

kJ
= cS

(
π

Gρ̄

)1/2

(2.17)

where ω(kJ) = 0

If λ < λJ , the solutions describe sound waves.

If λ > λJ , one of these solutions describes the exponentially fast growth of inhomo-
geneities, while the other corresponds to a decaying mode. Obviously, in our universe, the
bigger the lentgh, the less stable it will be against gravitational collapse.

Entropy Perturbations

In the presence of entropy inhomogeneities, the equation becomes

¨δρk + (k2c2S − 4πGρ̄)δρk = −σk2δSk (2.18)

The solution of this equation can be written as the sum of its particular solution and a general
solution. The general solution is the solution of adiabatic perturbation, the particular solution
is called the entropy perturbation

δρk = − σk2δSk

k2c2S − 4πGρ̄
(2.19)

Entropy perturbations can occur only in multi-component fluids(why?). For example, in a
fluid consisting of baryons and radiation, the baryons can be distributed inhomogeneously on a
homogeneous background of radiation.
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Vector Perturbations

When δρ = 0, δS = 0, we have

∂δv

∂t
= 0, ∇ · δv = 0 (2.20)

∂δvk

∂t
= 0, k · δvk = 0 (2.21)

So, the vector perturbations describe shear motions of the media which do not disturb the energy
density.

2.2 Adding Expansions

This dark energy changes the expansion rate and, as a result, influences the growth of inho-
mogeneities in the cold matter.

Backgroud

In an expanding homogeneous and isotropic universe, the only difference is that the back-
ground velocities is not zero but obey the Hubble law

v̄ = Hr (2.22)

Substituting these expressions into (2.1) we have

˙̄ρ+ 3Hρ̄ = 0 (2.23)

into (2.2,2.4) we have
Ḣ +H2 = −3πG

4
ρ̄ (2.24)

Perturbations

We consider only adiabatic perturbations

ρ(t, r) = ρ̄(t) + δρ(t, r)

v(t, r) = v̄(t) + δv(t, r) = Hr+ δv(t, r)

P (t, r) = P̄ (t) + δP (t, r) = P̄ (t) + c2Sδρ(t, r)

Φ(t, r) = Φ̄(t) + δΦ(t, r)

(2.25)
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then we have the linear equations
∂δρ

∂t
+ ρ̄∇ · (δv) + δρ∇ · v̄ = 0 (2.26)

∂δv

∂t
+ (v̄ · ∇)δv + (δv · ∇)v̄ +

c2S
ρ̄
∇δP +∇δΦ = 0 (2.27)

∇2δΦ = 4πGa2δρ (2.28)

Comiving Coordinates

The coordinates changes as

t′ = t r = a(t)x (2.29)
∂

∂t
=

∂

∂t′
−Hx · ∇x (2.30)

∇r =
1

a
∇x (2.31)

We finally obtain our equation in comiving coordinates
∂δρ

∂t
+ 3Hδρ+

ρ̄

a
∇δv = 0 (2.32)

∂δv

∂t
+Hδv +

c2S
aρ̄

∇δρ+
1

a
∇ϕ = 0 (2.33)

∇2ϕ = 4πGa2δρ (2.34)

which lead to
δ̈ + 2Hδ̇ − (

c2S
a2

∇2 + 4πGρ̄)δ = 0 (2.35)

which describes gravitational instability in an expanding universe. Then we can analyse the
equation in Fourier space like before

δ̈k + 2Hδ̇k + (
c2Sk

2

a2
− 4πGρ̄)δk = 0 (2.36)

The second term is damping term, and the third term Discribes the contribution of gavity. In
the k-mode, we have δ = δk(t)e

ik·x, and the Jeans length in comiving coordinates is

λJ =
2π

kJ
=

cS
a

(
π

Gρ̄

)1/2

(2.37)

1. For scales much smaller than the Jeans length, k ≫ kJ , we have

δ̈k + 2Hδ̇k +
c2Sk

2

a2
δk = 0 (2.38)

δk ∝ 1
√
csa

exp

(
±ik

∫
cs
a
dt

)
(2.39)

2. For scales much larger than the Jeans length, k ≪ kJ , we have

δ̈k + 2Hδ̇k − 4πGρ̄δk = 0 (2.40)
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Vector Perturbations

When δ = 0, we have the vector perturbation

∂δv

∂t
+Hδv = 0, ∇ · δv = 0 (2.41)

Obviously, the vector perturbations decay as the universe expands.

In an inflationary universe there is no room for such large primordial vector perturbations and
they do not play any role in the formation of the large-scale structure of the universe. However,
they can be generated at late times, after nonlinear structure has been formed, and can explain
the rotation of galaxies.

2.3 Growth of Matter Perturbation

δ̈k + 2Hδ̇k − 4πGρ̄δk = 0 (2.42)

Matter Dominated Universe

In a flat matter-dominated universe we have:

a ∝ t2/3 H =
2

3t
4πGρ̄m =

3

2
H2 =

2

3t2
(2.43)

then

δ̈k +
4

3t
δ̇k −

2

3t2
δk = 0 (2.44)

δk = C1t
3/2 + C2t

−1 = C ′
1a+ C ′

2a
−3/2 (2.45)

In addiction, using the Piosson euqation ∇2δΦ = 4πGa2δρ we found that

Φ = Const (2.46)

in the matter dominated era

Radiation Dominated Universe

In a flat radiation-dominated universe we have:

a ∝ t1/2 H =
1

2t
ρ̄m ≪ ρ̄r (2.47)
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then

δ̈k +
1

t
δ̇k − 4πG(δmδm,k + δrδr,k) = 0 (2.48)

Since the radiation fluid has a large sound speed, we expect its fluctuations to oscillate on scales
smaller than the horizon. Furthermore, ρr ≫ ρm in radiation era, we can neglect the last term
and the equation becomes

δ̈k +
1

t
δ̇k = 0 (2.49)

δk = C1 ln t+ C2 = C ′
1 ln a+ C ′

2 (2.50)

We can find that
Φ ∝ a−2 (2.51)

in the radiation dominated era

Dark Energy Dominated Universe

In a flat Λ-dominated universe we have:

H = Const 4πGρ̄m ≪ H2 (2.52)

Since 4πGρ̄m ≪ H2 we can drop the last term, and

δ̈k + 2Hδ̇k = 0 (2.53)

δk = C1 + C2a
−2 (2.54)

We can find that
Φ ∝ a−1 (2.55)

in the dakr energy era.

2.4 Summary

Table 1: Summary of the evolution of perturbations

Radiation Era Matter Era Dark Energy era

Φ a−2 Const a−1

δm ln a a Const
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3 Relativistic Perturbation Theory

The FRW metric and energy momentum tensor in the form of conformal time

d2s = a2(η)(−d2η + d2x) Tµν = diag(ρ,p) (3.1)

Perturbations

gµν = ḡµν + δgµν (3.2)

Tµν = T̄µν + δTµν (3.3)

3.1 Metric Perturbations

SVT Decomposition

Counting the number of independent functions used to form hµν , we find

1. Four functions for the scalar perturbations
2. Four functions for the vector perturbations (two 3-vectors with one constraint each)
3. Two functions for the tensor perturbations (a symmetric 3-tensor has six independent com-

ponents and there are four constraints).

So under the SVT(scalar-vector-tensor) decomposition the spacetime can be written as

ds2 = a2(η)[−(1 + 2A)dη2 + 2Bidx
idη + (δij + 2Dij)dx

idxj] (3.4)

where the three-vectorsBi can be split into the gradient of a scalarB and a divergenceless vector
B̂i

Bi = ∂iB + B̂i (3.5)

and any rank-2 symmetric tensor can be written into

Dij = Cδij + ∂⟨i∂j⟩D + ∂(iD̂j) + D̂ij (3.6)

where D̂ij are traceless and transverse, and

∂⟨i∂j⟩D = (∂i∂j −
1

3
δij∇2)D (3.7)

∂(iD̂j) =
1

2
(∂iD̂j + ∂jD̂i) (3.8)

So we can concluded that
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1. Scalar perturbations. Scalar perturbations are characterized by the four scalar functions
A,B,C,D. They are induced by energy density inhomogeneities. They exhibit gravita-
tional instability and may lead to the formation of structure in the universe.

2. Vector perturbations. Described by the two vectors B̂i and D̂i, vector perturbations are
related to the rotational motions of the fluid. As in Newtonian theory, they decay very
quickly. and are not very interesting from the point of view of cosmology.

3. Tensor perturbations. Tensor perturbations D̂ij have no analog in Newtonian theory.
They describe gravitational waves.

Now scalar, vector and tensor perturbations are decoupled and thus can be studied separately.

Coordinate Transformations

Consider an infinitesimally small coordinate transformation

xµ → x̃µ = xµ + ξµ (3.9)

Our metric will also transformation

g̃µν(x̃) =
∂xα

∂x̃µ

∂xβ

∂x̃ν
gαβ(x) (3.10)

And we can expand g̃µν(x̃) near x

g̃µν(x̃) = g̃µν(x) +
∂g̃µν
∂xα

ξα + · · · (3.11)

If we give a perturbation to the metric

gµν(x) = ḡµν + hµν (3.12)

and (3.10) and (3.11) will becomes

g̃µν(x̃) = ḡµν + hµν − ḡαν∂µξ
α − ḡαµ∂νξ

α (3.13)

g̃µν(x̃) = g̃µν(x) +
∂gµν
∂xα

ξα + · · · (3.14)

It is more convenient to work with so-called gauge transformations, which affect only the
field perturbations. For this purpose, after making the coordinate transformation (3.9), we rela-
bel coordinates by dropping the prime on the coordinate argument, and we attribute the whole
change in gµν(x) to a change in the perturbation hµν(x). The field equations should thus be
invariant under the gauge transformation. (Weinberg. Cosmology)

hµν → hµν − ḡαν∂µξ
α − ḡαµ∂νξ

α − ∂αḡµνξ
α (3.15)
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Similarly, for scalars and vectors we have

δq → δq − ∂µq̄ξ
µ (3.16)

δuµ → δuµ − ūα∂µξ
α − ūµξ

α (3.17)

For Perturbations under the FRW metirc, ξµ = (T, Si) and Si = ∂iS + Ŝi we have

h̃00 = h00 + 2a(aT )′ = h00 + 2a2(HT + T ′)

h̃i0 = hi0 + a2[(T − S ′),i − Ŝ ′
i]

h̃ij = hij − a2
(
2HTδij + 2S,ij + Ŝi,j + Ŝj,i

) (3.18)

By applying SVT decomposition we have

Ã = A−HT − T ′

B̃ = B + T − S ′ ˜̂
Bi = B̂i − Ŝ ′

i

C̃ = C −HT − 1

3
∇2S

D̃ = D − S
˜̂
Di = D̂i − Ŝi

˜̂
Dij = D̂ij

Gauge-Invariant Variables

One way to avoid the gauge problem is to define special combinations of the metric pertur-
bations that do not transform under a change of coordinates. These are the so-called Bardeen
variables

Ψ = A+H(B −D′) + (B −D′)′ (3.19)

Φ = −C +
1

3
∇2D −H(B −D′) (3.20)

Choosing a Gauge

1. Newtonian gauge

B = D = 0 (3.21)

ds2 = a2(η)[−(1 + 2Ψ)dη2 + (1− 2Φ)δijdx
idxj] (3.22)

2. Synchronous gauge

A = B = 0 (3.23)

ds2 = a2(η)[−dη2 + (δij + 2Dij)dx
idxj] (3.24)
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3.2 Energy momentum Tensor Perturbations

Energy Momentum Tensor

For perfect fluid we have

Tµν = Pδµν + (P + ρ)UµUν (3.25)

with Ūµ = a−1(1, 0) and gµνU
µU ν = 1 we have Uµ = a−1(1− A, vi)

Analogous to the condiction of metric perturbation, the perturbation of energy momentum
tensor is

T00 = ρ̄+ δρ

Ti0 = −(ρ̄+ P̄ )vi = −qi

Tij = (P̄ + δP )δij +Πij

(3.26)

where

vi = ∂iv + v̂i (3.27)

Πij = ∂⟨i∂j⟩Π+ ∂(iΠ̂j) + Π̂ij (3.28)

Coordinate Transformation

Consider an infinitesimally small coordinate transformation

xµ → x̃µ = xµ + ξµ where ξµ = (T, Si) (3.29)

T̃µν =
∂xα

∂x̃µ

∂xβ

∂x̃ν
Tαβ (3.30)

We get

δρ̃ = δρ− ρ̄′T q̃i = qi + (ρ̄+ P̄ )S ′
i

δP̃ = δP − P̄ ′T ṽi = vi + S ′
i Π̃ij = Πij

Gauge-Invariant Variables

As before, we can define specific combinations of variables for which these transformations
cancel. There are various gauge-invariant quantities that can be formed from the metric and
matter variables

1. comoving density contrast ∆

ρ̄∆ = δρ+ ρ̄′(v +B) (3.31)
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2. curvature perturbations R and ζ

ζ = −C +
1

3
∇2D +Hδρ

ρ̄′
(3.32)

R = −C +
1

3
∇2D −H(v +B) (3.33)

In Newtonian gauge we have

ζ = Φ+Hδρ

ρ̄′
(3.34)

R = Φ−Hv (3.35)

Choosing a Gauge

1. Uniform density gauge

δρ = 0 (3.36)

The main scalar perturbation in this gauge is the curvature perturbation δgij = a2(1−2ζ)δij

2. Comoving gauge

v +B = 0 (3.37)

The main scalar perturbation in this gauge is the curvature perturbation δgij = a2(1 −
2R)δij

3.3 The Evolution Equations of Perturbations

We defined the perturbations of the metric and the energy-momentum tensor, and discussed
their gauge dependence. Our next task is to derive the evolution equations for these perturba-
tions. The evolution of the metric is governed by the Einstein equation, Gµν = 8πGTµν , while
the evolution of the matter perturbations follows from the conservation of the energy momentum
tensor, ∇µT

µ
ν = 0.

It will be convenient to perform this analysis in a fixed gauge and we will take this to be the
Newtonian gauge

ds2 = a2(η)[−(1 + 2Ψ)dη2 + (1− 2Φ)δijdx
idxj] (3.38)

Conservation Equations

The conservation equations

∇µT
µ
ν = ∂µT

µ
ν + Γµ

αµT
α
ν − Γα

νµT
µ
α = 0 (3.39)
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The temporal part gives the continuity equation

δρ′ = −3H(δρ+ δP )− ∂iq
i + 3Φ′(ρ̄+ P̄ ) (3.40)

δ′ = −
(
1 +

P̄

ρ̄

)
(∇ · v − 3Φ′)− 3H

(
δP

δρ
− P̄

ρ̄

)
(3.41)

and the spatial part gives the Euler equations

q′i = −4Hqi − (∂iΨ)(ρ̄+ P̄ )− ∂iδP − ∂jΠij (3.42)

v′i = −
(
H +

P̄

ρ̄+ P̄

)
vi −

1

ρ̄+ P̄
(∂iδP − ∂jΠij)− (∂iΨ) (3.43)

Consider a non-relativistic fluid with Pm = 0 and Πij = 0

δ′m = −∇ · vm + 3Φ′ (3.44)

v′
m = −Hvm −∇Ψ (3.45)

and
δ′′m +Hδ′m = ∇2Ψ+ 3(Φ′′ +HΦ′) (3.46)

For a relativistic perfect fluid with Pr = ρr/3 and Πij = 0

δ′r = −4

3
∇ · vr + 4Φ′ (3.47)

v′
r = −1

4
∇δr −∇Ψ (3.48)

and
δ′′r −

1

3
∇2δm =

4

3
∇2Ψ+ 4Φ′′ (3.49)

Einstein Equations

The temporal part of Einstein equations gives

∇2Φ− 3H(Φ′ +HΨ) = 4πGa2δρ (3.50)

the space-time component gives

− (Φ′ +HΨ) = 4πGa2q (3.51)

with this the two equations (3.50) and (3.50) can be combine into the Poisson equation

∇2Φ = 4πGa2ρ̄∆ (3.52)
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The spatial part gives
∂⟨i∂j⟩(Φ−Ψ) = 4πGa2Πij (3.53)

Finally we look at the trace of the space-space component of Einstein equations, which gives

Φ′′ +HΨ′ + 2HΦ′ +
1

3
∇2(Ψ− Φ) + (2H′ +H2)Ψ = 4πGa2δP (3.54)

If Πij = 0 we have Φ ≈ Ψ, then the equations above can be written as

∇2Φ− 3H(Φ′ +HΦ) = 4πGa2δρ (3.55)

−(Φ′ +HΦ) = 4πGa2q (3.56)

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = 4πGa2δP (3.57)

For the equation of state δP = c2sδρ+ σδS, we have

Φ′′ + 3H[Φ′ + c2s(Φ
′ +HΨ)] + (2H′ +H2)Φ− c2s∇2Φ = 4πGa2σδS (3.58)

3.4 Summary

Conservation equations for scalar perturbations

The continuity equation

δ′ = −
(
1 +

P̄

ρ̄

)
(∇ · v − 3Φ′)− 3H

(
δP

δρ
− P̄

ρ̄

)
(3.59)

The Euler equations

v′i = −
(
H +

P̄

ρ̄+ P̄

)
vi −

1

ρ̄+ P̄
(∂iδP − ∂jΠij)− (∂iΨ) (3.60)

Fora a non-relativistic fluid with Pm = 0 and Πij = 0

δ′′m +Hδ′m = ∇2Ψ+ 3(Φ′′ +HΦ′) (3.61)

For a relativistic fluid with Pr = ρr/3 and Πij = 0

δ′′r −
1

3
∇2δm =

4

3
∇2Ψ+ 4Φ′′ (3.62)

Einstein equations for scalar perturbations

The relativistic Poisson equation

∇2Φ− 3H(Φ′ +HΨ) = 4πGa2δρ (3.63)
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The equation for the anisotropic stress

∂⟨i∂j⟩(Φ−Ψ) = 4πGa2Πij (3.64)

The equation for the velocity

− (Φ′ +HΨ) = 4πGa2q = 4πGa2(ρ+ P )v (3.65)

The equation for the pressure perturbation

Φ′′ +HΨ′ + 2HΦ′ +
1

3
∇2(Ψ− Φ) + (2H′ +H2)Ψ = 4πGa2δP (3.66)
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4 Initial Condictions

4.1 Super Horizon Limit

At sufficiently early times, all scales of interest to current observations were outside of the
Hubble radius. On such superhorizon scales, the evolution of the perturbations becomes very
simple.

Super horizon limit of continuity equations

Consider the superhorizon limit of the continuity equations (3.44) and (3.47) for matter and
radiation

δ′m = 3Φ′ (4.1)

δ′r = 4Φ′ (4.2)

we have
δγ = 4Φ + Cγ δγ = 4Φ + Cγ

δν = 4Φ + Cν δν = δγ + Sν

δc = 3Φ + Cc δc =
3

4
δγ + Sc

δb = 3Φ + Cb δb =
3

4
δγ + Sb

(4.3)

The parameters Sν , Sc and Sb are called Isocurvature modes. And if Sν = Sc = Sb = 0 and
Cγ ̸= 0, we call such kind of perturbation adiabatic modes.

Figure 1: Perturbation modes(Daniel Grin)

And the equations (3.45) and ((3.48)) becomes (we do not need superhorizon limit here, but
use the fact that H = 1/η in the radiation domination)

v′m +
1

η
vm = −Ψ (4.4)

v′r +
1

4
δr = −Ψ (4.5)
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Super horizon limit of Einstein equations

The relativistic Poisson equation becomes

∇2Φ− 3H(Φ′ +HΨ) = 4πGa2
∑

α=γ,ν,c,b

ραδα = 4πGa2ρtot
∑

α=γ,ν,c,b

fαδα (4.6)

fγ + fν + fc + fb = 1 (4.7)

If we ignore the anisotropic stress and neglect the fisrt term for superhorizon modes

− 3H(Φ′ +HΦ) = 4πGa2ρtot
∑

α=γ,ν,c,b

fαδα (4.8)

using the Friedmann equation and H = 1/η, we have

−2(ηΦ′ +Ψ) =
∑

α=γ,ν,c,b

fαδα

=

(
fγ + fν +

3

4
fc +

3

4
fb

)
δγ + (fνSν + fcSc + fbSb)

=

(
fγ + fν +

3

4
fc +

3

4
fb

)
(4Φ + Cγ) + (fνSν + fcSc + fbSb)

(4.9)

where we used the result of continuity equations in the second equality. Since we are deep into
the radiation dominated epoch, photons and neutrinos dominate (fγ + fν ≈ 1) and thus

− 2(ηΦ′ + 2Φ + Ψ) = Cγ + fνSν + fcSc + fbSb (4.10)

4.2 Adiabatic Perturbations

Adiabatic Perturbations

For adiabatic perturbations, Sν = Sc = Sb = 0. Ignoring the anisotropic stress given by
neutrinos (Φ ≈ Ψ), we have

δγ = δν =
4

3
δc =

4

3
δb = −2Φini (4.11)

vγ = vν = vc = vb = −ηΦini

2
(4.12)

R = ζ =
3Φini

2
(4.13)

We can find that in adiabatic modes, all the species give the same amount of contribution to the
potential Φ, as shown in Fig.1.

Proof. For the gravitational potentials, we have

ηΦ′ + 3Φ = −1

2
Cγ (4.14)

22



we then get

ηΦ′′ + 4Φ′ = 0 ⇒ Φ = C1 + C2
1

η3
(4.15)

Focusing on the growing mode, Φ = Φini we have Cγ = −6Φini and δγ = −2Φini

For velocities, solving the equations

v′m +
1

η
vm = −Φ v′r +

1

4
δr = −Φ (4.16)

using the condiction that Φ = Φini and δγ = −2Φini is a constant, we have

vγ = vν = vc = vb = −ηΦini

2
(4.17)

In Newtonian gauge we have

R = Φ−Hvtot = Φ−H
∑

α(ρα + Pα)vα
ρtot + Ptot

= Φ−H4fγvγ + 4fνvν + 3fcvc + 3fbvb
3 + fγ + fν

=
3

2
Φini

ζ = Φ+Hδρ

ρ′
= Φ− δρ

3(ρ+ P )

= Φ− fγδγ + fνδν + fcδc + fbδb
3 + fγ + fν

=
3

2
Φini

then
R = ζ =

3

2
Φini (4.18)

Why adiabatic?

From the thermodynamical relation:

TδS = δU + PδV (4.19)

we can write
TδS

V
= δρ+ (ρ̄+ P̄ )

δV

V
= δρ+ (ρ̄+ P̄ )

δn

n
=

∑
α=γ,ν,c,b

(
δρα +

ρ̄+ P̄

n̄
δnα

)
=

(
ρν + nν

ρtot − Ptot

ntot

)
(δν − δγ) +

∑
α=c,b

(
ρα + nα

ρtot − Ptot

ntot

)(
δα − 3

4
δγ

)
So Sν = Sc = Sb = 0, implies δS = 0.
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4.3 Curvature Perturbations

In Newtonian gauge we have

R = Φ−Hv ζ = Φ+Hδρ

ρ′
= Φ− δρ

3(ρ+ P )
(4.20)

Proposition 4.1 For adiabatic perturbations, ζ and R is invariant during evolution at super-
horizon scale.

Proof. For ζ

ζ ′ = Φ′ − δρ′(ρ+ P )− δρ(ρ′ + P ′)

3(ρ+ P )2
(4.21)

Using the continuity equations

ρ̄′ = −3H(ρ̄+ P̄ ) (4.22)

δρ̄′ = −3H(δρ+ δP )− ∂iq
i + 3Φ′(ρ̄+ P̄ ) (4.23)

we have
(ρ̄+ P̄ )

ζ ′

H
=

(
δP

δρ
− P̄ ′

ρ̄′

)
δρ+

1

3

∇2q

H
(4.24)

For adiabatic perturbations, the term in the braket on the right-hand side vanishes, while the
second term is suppressed by a factor k2 on large scales. So we have ζ ′ = 0 on superhorizon
scales.

For R
R′ = Φ′ −H′v −Hv′ (4.25)

using continuity equations and Friedmann equation we can show that

(ρ̄+ P̄ )
R′

H
=

(
δP

δρ
− P̄ ′

ρ̄′

)
δρ+

P̄ ′

ρ̄′
∇2Φ

4πGa2
(4.26)

and is therefore also conserved on superhorizon scales.

Proposition 4.2 Consider a universe dominated by a fluid with constant equation of state P =

wρ. Assuming adiabatic perturbations and vanishing anisotropic, the evolution of gravitational
potential Φ obeys

Φ′′ + 3(1 + w)HΦ′ − w∇2Φ = 0 (4.27)

Proof. The equation for the pressure perturbation and the relativistic Poisson equation yields

Φ′′ +HΨ′ + 2HΦ′ +
1

3
∇2(Ψ− Φ) + (2H′ +H2)Ψ = 4πGa2δP (4.28)

∇2Φ− 3H(Φ′ +HΨ) = 4πGa2δρ (4.29)
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For adiabatic perturbations we have δP/δρ = w, and for vanishing anisotropic we have Φ ≈ Ψ

Φ′′ + 3H(1 + w)Φ′ + [2H′ + (1 + 3w)H2]Φ− w∇2Φ = 0 (4.30)

Using the fact that a = η2/(1+3w) we have H = 2
(1+3w)η

, then

Φ′′ + 3(1 + w)HΦ′ − w∇2Φ = 0 (4.31)

Furthermore, solving the equation in superhorizon scale

Φ′′ + 3(1 + w)HΦ′ = 0 ⇒ Φ = C1 + C2η
− 5+3w

1+3w (4.32)

which shows that the growing mode is a constant on superhorizon scales

Proposition 4.3 Consider a universe dominated by a fluid with constant equation of state P =

wρ, the superhorizon limit of the curvature perturbation is

R =
5 + 3w

3 + 3w
Φ (4.33)

Proof. The 0− i part of Einstein equations gives

− (Φ′ +HΦ) = 4πGa2(ρ̄+ P̄ )v = 4πGa2(1 + w)ρ̄v =
3

2
H2(1 + w)v (4.34)

Using the fact that a = η2/(1+3w) we have H = 2
(1+3w)η

, we have

v = −2(H−1Φ′ + Φ)

3(1 + w)H
= −1 + 3w

3 + 3w
ηΦ (4.35)

then
R = Φ−Hv = Φ+

2

(1 + 3w)η

1 + 3w

3 + 3w
ηΦ =

5 + 3w

3 + 3w
Φ (4.36)

Because R is a constant, it must have the same value in radiation and matter domination

R(ηr) =
5 + 3wr

3 + 3wr

Φr =
5 + 3wm

3 + 3wm

Φm = R(ηm) (4.37)

for matter and radiation we have wr = 1/3, wm = 0, then

Φm =
9

10
Φr (4.38)

which shows that the amplitude of super-Hubble modes of Φ drops by a factor of 9/10 in the
radiation-to-matter transition.
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4.4 Entropy Modes and Isocurvature Perturbations

Isocurvature Perturbations

The name “isocurvature” comes from the fact that when these modes are present it is pos-
sible to have R = 0 or ζ = 0. In that case, as shown in Fig.1, an overdensity in one species
compensates for an underdensity in another, resulting in no net curvature perturbation.

ζ = Φ− δρ

3(ρ+ P )
= Φ− fγδγ + fνδν + fcδc + fbδb

3 + fγ + fν
(4.39)

At early times, fγ + fν ≈ 1, we have

ζ = Φ− 1

4
(fγδγ + fνδν + fcδc + fbδb) (4.40)
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5 Scalar Perturbation

In this section, we consider the adiabatic scalar perturbation, mainly on superhorizon scale.
We will use the Einstein equations

Φ′′ + 3H[Φ′ + c2s(Φ
′ +HΨ)] + (2H′ +H2)Φ− c2s∇2Φ = 4πGa2σδS (5.1)

∇2Φ− 3H(Φ′ +HΦ) = 4πGa2δρ (5.2)

where evolution of perturbations. The former one is used for the evolution of potential Φ and
the latter one is used for the evolution of energy density perturbation in its dominated era. And
the evolution of energy density perturbation in its undominated era should be derive from the
continuity equation and Euler equations.

5.1 Evolution of the Potential

Matter era

In a flat matter-dominated universe (P = 0), for adiabatic modes

c2s = 0 σ = 0 a ∝ η2 H =
2

η
(5.3)

In this case, for both superhorizon and subhorizon perturbations, and (5.1) simplifies to

Φ′′ + 3HΦ′ = Φ′′ +
6

η
Φ′ = 0 (5.4)

Φk = C1 +
C2

η5
(5.5)

Radiation era

For the case P = wρ we have:

c2s = w σ = 0 a ∝ η
2

1+3w H =
2

1 + 3w

1

η
(5.6)

In this case (5.1) simplifies to

Φ′′ + 3H(1 + w)Φ′ − w∇2Φ = 0 (5.7)

Φ′′
k +

1 + w

1 + 3w

6

η
Φ′

k + wk2Φk = 0 (5.8)

has the solution

Φk =
1

ην
[
C1Jν(

√
wkη) + C2Yν(

√
wkη)

]
ν =

1

2

5 + 3w

1 + 3w
(5.9)
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where Jν and Yν are Bessel functions. For radiation we have w = 1/3

Φk = C1
sinφ− φ cosφ

φ3
(φ = kη/

√
3) (5.10)

For superhorizon mode (kη ≪ 1)
δk =

1

3
C1 (5.11)

For subhorizon mode (kη ≫ 1)
δk =

C1

φ2
cosφ (5.12)

Evolution through radiation-matter equality

Figure 2: Potential evolution

Consider the important case of a flat universe with a mixture of matter and radiation. The
energy density of matter decreases as 1/a3 while that of radiation decays as 1/a4. Therefore,
we have

ρ̄ = ρ̄m + ρ̄r =
ρ̄eq

2

[(aeq

a

)3

+
(aeq

a

)4
]

(5.13)

Define
ρ̄m
ρ̄r

=
a

aeq
= y (5.14)

Assuming adiabatic perturbations, the superhorizon evolution of the potential in a universe with
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matter and radiation can be derive from the Einstein euqation

∇2Φ− 3H(Φ′ −HΦ) = 4πGa2(ρ̄mδm + ρ̄rδr)

⇒− 3H(Φ′ −HΦ) = 4πGa2ρ̄

(
y

1 + y
+

4

3

1

1 + y

)
δm

⇒− 3H(Φ′ −HΦ) =
3

2
H2

(
y

1 + y
+

4

3

1

1 + y

)
δm

⇒ y
dΦ

dy
+ Φ = −1

6

3y + 4

y + 1
δm

We get

y
dΦ

dy
+ Φ = −1

6

3y + 4

y + 1
δm (5.15)

Using δ′m = 3Φ′, we have dδm
dy

= 3dΦ
dy

, and the mma gives us

2y(1 + y)(4 + 3y)
d2Φ

dy2
+ (32 + 3y(18 + 7y))

dΦ

dy
+ 2Φ = 0 (5.16)

Φ = C1

√
1 + y

y3
+ C2

2(−16− 8y + 2y2 + 9y3)

15y3
(5.17)

Adding initial conditions: solution reduces to a constant at early times, we must have

Φ =
Φini

10y3
[16

√
1 + y + 9y3 + 2y2 − 8y − 16] (5.18)

Note that for y → 0 gives Φ → Φini and y → ∞ gives Φ → 9
10
Φini

Dark energy era

In a flat Λ-dominated universe we have

H = Const a =
1

1 +H(η0 − η)
4πGρ ≪ H2 (5.19)

which means δρ ≈ δP ≈ 0, then

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = 4πGa2δP

⇒d2Φ

da2
+

5

a

dΦ

da
+

3

a2
Φ = 0

⇒Φ = C1a
−1 + C2a

−3

5.2 Evolution of Matter Perturbation
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Matter era

In Fourier space, equation (5.2) becomes

−k2Φk − 3H(Φ′
k +HΦk) = 4πGa2δρk (5.20)

Φk = C1 +
C2

η5
H2 =

8πG

3
ρ̄k H =

2

η
(5.21)

and
δk = −η2k2

6
Φk − 2Φk − ηΦ′

k (5.22)

For superhorizon mode (kη ≪ 1)

δk = −2C1 +
3C2

η5
(5.23)

Neglecting the decaying mode we have

δk ≈ −2Φk = Const (5.24)

For subhorizon mode (kη ≫ 1)

δk = −k2

6

(
C1η

2 +
C2

η3

)
(5.25)

Therefore, δm is constant on super-horizon scales, but when a scale crosses the horizon it
starts to grow as δm ∝ η2 ∝ a

Radiation era

During the radiation era, matter is a subdominant component and we cannot use the above
trick to determine the evolution of matter perturbations from the Einstein equations for the grav-
itational potential. Instead, we must work with the continuity and Euler equations.

δ′′m +Hδ′m = ∇2Φ + 3(Φ′′ +HΦ′) (5.26)

whereΦ = Φr+Φm is sourced by both radiation and matter. The contribution from the radiation,
Φr, is rapidly oscillating on subhorizon scales, while the contribution from matter, Φm, is a
constant. The solution δm therefore inherits a “fast mode” sourced by Φr and a “slow mode”
sourced by Φm. It turns out that the fast mode is suppressed by a factor of (H/k)2 relative to the
slow mode (Weinberg). This reflects the fact that the matter can’t react to the fast change in the
gravitational potential and effectively only evolves in response to the time-averaged potential.
As a result, δm is sourced by Φm even deep in the radiation era.

δ′′m +Hδ′m = 4πGa2ρ̄mδm (5.27)
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Mészáros equation
d2δm
dy2

+
2 + 3y

2y(y + 1)

dδm
dy

− 3

2y(y + 1)
δm = 0 (5.28)

whose solutions are

δm ∝

1 + 3
2
y(

1 + 3
2
y
)
ln
(√

1+y+1√
1+y−1

)
− 3

√
1 + y

y = a/aeq (5.29)

Dark energy era

5.3 Evolution of Radiation Perturbation

Radiation era

In radiation era, equation (5.2) becomes

−k2Φk − 3H(Φ′
k +HΦk) = 4πGa2δρk (5.30)

Φk = C1
sinφ− cosφ

φ3
H2 =

8πG

3
ρ̄k H =

1

η
(5.31)

and
δk = −2η2k2

3
Φk − 2Φk − 2ηΦ′

k (5.32)

For superhorizon mode (kη ≪ 1)
δk = −2

3
C1 (5.33)

For subhorizon mode (kη ≫ 1)
δk = −2 cosφ (5.34)

Matter era

Since the radiation fluctuations are subdominant, we must use the continuity and Euler equa-
tions to follow their evolution.

δ′′r −
1

3
∇2δr =

4

3
∇2Φ + 4Φ′′ =

4

3
∇2Φ (5.35)

For superhorizon mode (kη ≪ 1)

δk = −4Φk = Const (5.36)

For subhorizon mode (kη ≫ 1)

δk = C1 cosφ+ C2 sinφ− 4Φk (5.37)
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5.4 Summary

The evolution of perturbation of some situations have been give in Tab.2 , in which the other
cases will be filled in at a later date.

Table 2: Summary of the evolution of adiabatic perturbations

Scales Radiation Era Matter Era DE Era

Φ
k < H Const Const a−1

k > H a−2 cos(kη/
√
3) Const a−1

δm
k < H Const Const
k > H ln a a

∆m

k < H a2 a

k > H ln a a

δr
k < H Const Const
k > H cos(kη/

√
3) cos(kη/

√
3)+Const

∆r

k < H a2 a

k > H cos(kη/
√
3) cos(kη/

√
3)+Const

Figure 3: Adiabatic perturbation evolution (Mukhanov)
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6 Tensor Perturbations

6.1 Gravitational waves

Gravitational waves are tensor perturbations to the spatial metric

ds2 = a2(η)[−dη2 + (δij + hij)dx
idxj] (6.1)

Since the perturbation hij is symmetric (hij = hji), transverse (∂ihij = 0) and traceless (hii =

0), it contains 2 (6− 3− 1 = 2) independent modes (corresponding to the two polarizations of
the gravitational wave). To make this more explicit, we write the Fourier modes of hij as

hij =
∑

α=+,×

hα(η,k)ϵ
α
ij(k̂) (6.2)

where ϵαij(k̂) are two independent polarization tensors and hα(η,k) are the corresponding mode
functions.

For a gravitational wave with a wavevector pointing in the z-direction, i.e. k̂ = (0, 0, 1), we
can choose m̂ = x̂ and n̂ = ŷ, so that

hij = h+


1 0 0

0 −1 0

0 0 0

+ h×


0 1 0

1 0 0

0 0 0

 =


h+ h× 0

h× −h+ 0

0 0 0

 (6.3)

Each polarization mode then satisfies

h′′
ij + 2Hh′

ij −∇′2hij = 16πGa2Π̂ij (6.4)

Considering the perturbations in vacuum, Π̂ij = 0, in Fourier space we have

h′′
k + 2Hh′

k + k2hk = 0 (6.5)

and it is convenient to remove the Hubble friction term by defining fij = a(η)hij

f ′′
ij +

(
k2 − a′′

a

)
fij = 0 (6.6)

Solve this equation for a generic scale factor, a(η) = ηβ (radiation domination (β = 1),
matter domination (β = 2) and dark energy domination (β = −1)), we have

hα(η,k) =
Aα(k)

a(η)
ηjβ−1(kη) +

Aα(k)

a(η)
ηyβ−1(kη) (6.7)

where jβ(x) and yβ(x) are spherical Bessel functions and the constants Aα(k) and Aα(k) can
be fixed by the initial conditions.

The power spectrum for the individual polarization modes then is

⟨hα(k)hα(k)⟩ (6.8)
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Figure 4: Gravitational Wave( Scott Dodelson, Fabian Schmidt. Modern Cosmology. 2020)

7 Isocurvature Modes

The evolution of isocurvature perturbation are much more complicated. Fig.5 has shown the
evolution of isocurvature perturbation from radiation era to the matter era, in which the mode
comes into horizon in the matter era.

We can see that the isocurvature perturbation always turn into curvature perturbations.

Maybe I will add more details of isocurvature perturbation someday in the future.
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Figure 5: Isocurvature modes evolution (Mukhanov)

8 Boltzmann Equation

8.1 Boltzmann Equation

Boltzmann Equation

Boltzmann equation is very simple to write:

df

dt
= C[f ] (8.1)

where f is the one-particle distribution function andC[f ] is the collisional term, i.e. a functional
of f describing the interactions among the particles constituting the system under investigation.
The one-particle distribution is a function of time t, of the particle position x and of the particle
momentum p Therefore, the total time derivative can be written as:

df

dt
=

∂f

∂t
+

∂f

∂xi

dxi

dt
+

∂f

∂pi
dpi

dt
= L̂f (8.2)

The operator L̂ acting on f is called Liouville operator.

Remarks:

1. If interactions are absent, then
df

dt
= 0 (8.3)
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which is called the collisionless Boltzmann equation, or Vlasov equation.
2.

Liouville Theorem

8.2 Boltzmann Equation in General Relativity and Cosmology

In GR the distribution function must be expressed covariantly as f = f(xµ, P µ), and the
total derivative of f should be taken with respect to an affine parameter λ, as follows:

df

dt
=

∂f

∂xµ

dxµ

dλ
+

∂f

∂P µ

dP µ

dλ
(8.4)

The geometry enters through the derivative of the four-momentum, which can be expressed via
the geodesic equation:

dP µ

dλ
+ Γµ

αβP
αPβ = 0 (8.5)

so we have
df

dt
= P µ ∂f

∂xµ
− Γµ

αβP
αPβ

∂f

∂P µ
= L̂GRf (8.6)

It might seem that in the relativistic case we have gained one variable P 0, but this is not so be-
cause P 0 is related to the spatial momentum P i via the mass-shell relation gµνP

µP ν = −m2c2.
For this reason, we can reformulate the Liouville operator as follows

df

dt
= P µ ∂f

∂xµ
− Γi

αβP
αPβ

∂f

∂P i
= L̂GRf (8.7)

In FLRW metric, we must take into account tha f cannot depend on the position xi, because
of homogeneity and isotropy.

df

dt
= P 0 ∂f

∂x0
− Γi

αβP
αPβ

∂f

∂P i
= L̂GRf (8.8)

Considering the spatially flat case K = 0, we can show that the above equation can be cast as
follows

∂f

∂t
− 2HP i ∂f

∂P i
= 0 (8.9)

Again, because of isotropy, f cannot depend on the direction of P i, but only on its modulus
P 2 = δijP

iP j , we have
∂f

∂t
− 2HP

∂f

∂P
= 0 (8.10)

8.3 Perturbed Boltzmann Equations

The distribution function f can also be split in a background contribution plus a perturbation

f = f̄ + F (8.11)
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9 Power Spectrum

9.1 Power Spectrum

Because of the principle of cosmology, the spatial average of δ itself at a given time vanishes

⟨δ(x, t)⟩ = 0 (9.1)

The first non-trivial information lies in the correlation function, defined by the spatial average

ξ(r, t) = ξ(x− y, t) = ⟨δ(x, t)δ(y, t)⟩ (9.2)

when x = y, which means r = 0, the correlation function becomes variance

σ2(t) = ξ(0, t) = ⟨δ(x, t)δ(x, t)⟩ (9.3)

We have learned that the evolution of the density perturbations is best described in momen-
tum space. The correlation function in momentum space is given by

⟨δ(k, t)δ∗(k′, t)⟩ =
∫

d3xd3y e−ik·xeik
′·y ⟨δ(x, t)δ(y, t)⟩

=

∫
d3rd3y e−ik·r−i(k−k′)·yξ(r, t)

= (2π)3δ3D(k− k′)

∫
d3r e−ik·rξ(r, t)

= (2π)3δ3D(k− k′)P (k, t)

(9.4)

The P (k, t) is called the power spectrum. If we work in spherical polar coordinates, the power
spectrum depends only on the magnitude of the wavevector due to the rotational invariance. We
can derive

P (k, t) =

∫
d3re−ik·rξ(r, t) =

4π

k

∫ ∞

0

dr r sin(kr)ξ(r, t) (9.5)

ξ(r, t) =

∫
d3keik·rP (k, t) =

4π

k

∫ ∞

0

dk

k

k3

2π2
P (k, t)j0(kr) (9.6)

Consider the variance

σ2
δ = ξ(0) =

∫
dk

k

k3

2π2
P (k, t) =

∫
d ln k ∆2(k, t) (9.7)

where ∆2(k, t) = k3

2π2P (k, t) is thedimensionless power spectrum (equivalently to the variance
of the field per logarithmic range of k)
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For an arbitrary scalar variable X in position space, we define the power spectrum and the
dimensionless power spectrum in Fourier space by

⟨X(k, t)X∗(k′, t)⟩ = (2π)3δ3D(k− k′)PX(k, t) (9.8)

∆2
X(k, t) = 4π

(
k

(2π)

)3

PX(k, t) (9.9)

9.2 Angular Power Spectrum

Comparing the perturbations at two distinct points n and n gives the two-point correlation
function

C(θ, t) = ⟨δ(n, t)δ(n′, t)⟩ (9.10)

where cos θ = n · n′.

Given that we observe fluctuations on the spherical surface, it is convenient to expand the
temperature field in spherical harmonics

δ(n, t) =
∞∑
l=0

l∑
m=−l

almYlm(n) (9.11)

where the expansion coefficients alm are called multipole moments.

The two-point function of the multipole moments is defined as

⟨alma∗l′m′⟩ = Clδll′δmm′ (9.12)

where Cl is the angularpower spectrum and the Kronecker deltas are a consequence of statistical
isotropy.

The angular power spectrum is the harmonic space equivalent of the two-point correlation
function in real space.

C(θ) = ⟨δ(n, t)δ(n′, t)⟩

=
∑
lm

∑
l′m′

⟨alma∗l′m′⟩Ylm(n)Y
∗
l′m′(n′)

=
∑
lm

ClYlm(n)Y
∗
lm(n

′)

=
∑
lm

2l + 1

4π
ClPl(cos θ)

(9.13)

we have
Cl =

1

2l + 1

∑
m

|alm|2 (9.14)
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9.3 Window Functions

Mathematically, there is no difficulty in defining the density at a point x. But how
do we construct δ(x) from observations? In particular, what volume do we divide by?
If we observe many galaxies, each localised at some point xi, then the universe looks
far from homogeneous. The same is true for any fluid if we look closely enough. But
our interest is in a more coarse-grained description.

—-David Tong’s Lecture

So we introduce a window function at scale R as WR(x). The purpose of this function is to
provide a way to turn the observed density δ(x) into something that is smooth, and varies on
length scales ∼ R. We construct the smoothed density contrast as

δR(x) =

∫
d3xWR(x− x′)δ(x) (9.15)

In Fourier space, using the convolution theorem we have

δR(k) = W̃R(k)δ(k) (9.16)

9.4 Transfer Functions

The evolution of a perturbation δ of a given wavevector k from an initial time ηi to the
present can be distilled into a transfer function T (k, η), defined as

δ(k, η) = Tδ(k, η)δ(k, ηi) (9.17)

For specific modes, every variable X can be determined via a deterministic transfer function
by the initial condition for the curvature perturbation Ri or initial entropy Si.

X(k, η) = T ad
X (k, η)Ri (9.18)

X(k, η) = T iso
X (k, η)Si (9.19)

9.5 Matter Power Spectrum

Matter Power Spectrum

The density power spectrum of matter fluctuations is defined as

⟨δm(k, t)δ∗m(k′, t)⟩ = (2π)3δ3D(k− k′)Pm(k, t) (9.20)
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we have
Pm(k, t) = T 2(k, t)Pm(k, tini) (9.21)

where T (k, t) is the transfer function of matter perturbation satisfied δm(k, t) = T (k, t)δm(k, tini).

T 2(k, t) (9.22)

Pm(k) is usually compared with the observed power spectrum of the galaxy distribution.
This is clearly problematic, as it is by no means evident what the relation between these two
spectra should be. This problem is known under the name of “bias” and it is very often simply
assumed that the dark matter and galaxy power spectra differ only by a multiplicative factor. We
assume bias to be linear and scale independent, so that Pg(k) = b2Pm(k)

Harrison-Zel’dovich Spectrum

The primordial power spectrum is often written as a power law

Pm(k, tini) = Akn (9.23)

where A and n are constants. The exponent n (often also denoted by ns) is called the spectral
index. In 1970, well before inflation was introduced, it was argued by Harrison, Zel’dovich and
Peebles that the initial perturbations of our universe are likely to have taken a power law form
with spectral index n ≈ 1[]. This is now called the Harrison-Zel’dovich spectrum.

We note that the Poisson equation we have Φk = −4πGa2ρ̄δ
k2

,which implies the following
relation between the power spectra of Φ and δ

Pϕ(k, tini) ∝ k4Pm(k, tini) ∝ kn−4 (9.24)

and the dimensionless power spectrum yields

∆2
Φ =

k3

2π2
PΦ(k, tini) ∝ kn−1 (9.25)

For n = 1, the dimensionless power spectrum of the gravitational potential therefore becomes
k-independent, so that the variance receives equal contributions from every decade in k! This
property of the field is called scale invariance.

Combining the transfer function with the primordial power spectrum, we predict that the
late-time matter power spectrum should have the following asymptotic scalings:

Pm(k, t) ∝

kn k < keq

kn−4 k > keq

(9.26)
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9.6 CMB power Spectrum

For convenience, define
Θ(n) =

δT (n)

T̄
(9.27)

and the temperature fluctuations can be written as

Θ(n) =

(
1

4
δr +Ψ

)
⋆

− (v · n)⋆ +
∫ η0

η⋆

(Ψ′ + Φ′)dη (9.28)

Remarks:

1. We must known that Θ(n) is observed in the cosmic rest frame but not our local group. If
we want to derive such quantity observed by an observer o, we must consider the doppler
effect of the velocity of the observer

Θ(n) =

(
1

4
δr +Ψ

)
⋆

+ [v · n]o⋆ +
∫ ηo

η⋆

(Ψ′ + Φ′)dη (9.29)

2. A
The SW term:

(
1
4
δr +Ψ

)
⋆
, which is caused by gravitational redshift occurring at the

surface of last scattering.
The ISW term:

∫ ηo
η⋆
(Ψ′ + Φ′)dη, which is also caused by gravitational redshift, but

it occurs between the surface of last scattering and the Earth, so it is not part of the
primordial CMB.
The doppler term: [v · n]o⋆

3. Since there has been no evolution on large scales, this limit of the CMB spectrum directly
probes the initial conditions.

4. In the SW term, the gravitational redshift has won over the intrinsic temperature fluctua-
tions

Large Scales: Sachs-Wolfe Effect

Small Scales:
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