Chapter 1 Representations of Finite Groups

1.1 Linear Representatuions

Group Representations

Let V be a vector space over the field C of complex numbers and let GL(V') be the group
of isomorphisms of V onto itself.

Suppose now G is a finite group. A linear representation of G in 'V is a homomorphism
p: G — GL(V). When p is given, we say that V' is a representation space of G, or even

simply, a representation of G.

In the following discussions, we restrict ourselves to the case where V' has finite dimension.

A subrepresentation of a representation V' is a vector subspace W of V which is invariant
under the action of G. The restriction of p"V of p to the is then an isomorphism of W onto
itself. Then p"V : G — GL(W) a linear representation of G in W.

We have a very basic but important theory of subrepresentations

Let p : G — GL(V) be a linear representation of G in 'V and let W be a invariant
subspace of V under G. Then there exists a complement Wy of W in 'V which is also
invariant under G, so that V. =W & WV,

For convenience, denote p(g) as g. Let mp : V' — W be a projection, we can construct

1 _
PR

geG

the average of the map

Forw e W

gmog~tw = g(mo(g7'w)) = gg~tw = w

so mw = w. Since 7wy maps V into W and g preserves W, then 7 is also a projection, and we
have

TgWw = gw = gnw = Tg = gm
If now z € W9, Vg € G we have

m(gz) = g(mx) =0

which shows that W0 is invariant under G



1.1 Linear Representatuions

Faithful Representations: A linear representation in which different elements g of G are
represented by distinct linear mappings p(g). In more abstract language, this means that the
group homomorphism p : G — GL(V) is injective.

Regular Representations: A linear representation afforded by the group action of GG on
itself by translation.

Unitary Representations: A linear representation p of G on a complex Hilbert space H
such that Vg € G, p(g) is a unitary operator, denoted Rg.

Trivial Representations: A representation (V, p) of a group G on which all elements of G

act as the identity mapping of V.

Group Algebras and Regular Representations

The group algebra Ag of G is the set of formal linear combinations

v=">c(9)g

geG

All g € G are considered to be linearly independent, which can be viewed as basis of A¢
Hence, we have

dim Ag = |G| (1.1)

The regular representation R : G — GL(Ag) is the representation of the group on its

own algebra, defined by
R(g)v=gv=Y_c(s)(gs)

seG

Direct Sums and Tensor Products

Let (V1, p1) and (Va, p2) be two linear representations of a group G. Their direct sum is
the direct sum of vector spaces V; @ V5 with the linear action of GG uniquely determined by the

condition that

leGBVz(g)(vlvv?) = (pvl D sz)(g)(vlva) = (PV1 (g)vlva (Q)UQ) (1.2)

and the matrix representation can be written in diagnolized form

pvi(9)
pviava(9) = | (1.3)
pva(9)
Their tensor product is the tensor product of vector spaces V] ® V5 with the linear action of

G uniquely determined by the condition that

pPvieva(g)(v1 @ v2) = (P, ® p1,)(9)(v1 ® v2) = P13 (g)v1 ® pvy(g)va (1.4)



1.2 Irreducible Representations and Schur’s Lemma

To write this down more explicitly we introduce the Kronecker product of an n x n matrix A
and an m X m matrix B as
AnB A;B
AR B= |AnB A»nB --- 1.5)

If V and W are representations, the direct sum V' & W and the tensor product V' @ W are

also representations.
dim(Vy ® Vi) = (dimV})(dimV5) (1.6)
dim(V; @ V,) = dimV; + dimV5; 1.7

Exterior Powers and Symmetric Powers

The exterior powers A"V (or alternating power Alt"V') and symmetric powers Sym”™V are

subrepresentations of V®".

1.2 Irreducible Representations and Schur’s Lemma

Irreducible Representations

Let p : G — GL(V) be a linear representation of G. We say that it is irreducible if V
has no nontrivial invariant subspace. Of course if V has nontrivial invariant subspaces,

it is reducible.

Every representation is a direct sum of irreducible representations.

Using Thm1.1 we can decompose V' into an irreducible representations and its comple-
ment WO, If W0 is irreducible then it is over. If not, just apply Thm1.1 again on W and repeat
this process until all the subrepresentations is irreducible.

This property is called complete reducibility, which tells us that every representation can

be decompose into some irreducible representations by direct sum.

Schur’s Lemma

If V and W are irreducible representations of G and ¢ : V. — W is a linear map such
that py ¢ = ¢pw, then
1. Either ¢ is an isomorphism. or ¢ =0

2. If V=W, then ¢ = A for some \ € C, we say that ¢ is a homothety



1.3 Dual Representations

¢
V—— =W
PV W
¢

V————>W

(1) Notice that Ker¢ and Im¢ are invariant subspaces, and V' and W are irreducible
representations. So either Ker¢p = V, Im¢ = 0 or Ker¢p = 0, Im¢ = W, which lead to the
statement that either ¢ is an isomorphism. or ¢ = 0.

(2) If V.= W, since C is algebraically closed, there exists at least one eigenvalue of ¢,
says A. As aresult,  — A\I has a nonzero kernel, immediately (1) tells us that p — A\I = 0, so
¢ = M.

We will call the map ¢ a G-linear map when we want to distinguish it from an arbitrary

linear map between the vector spaces V and W.

All irreducible representations of an abelian group are one-dimensional.

For abelian group we have

p(g1)p(g2) = p(g2)p(91)

Using Schur’s lemma we have p(g) = AI, which leads to the representation is one-dimensional.

1.3 Dual Representations

Let G be a group and p is a linear representation of it on the vector space V, then the

dual representation p* is defined over the dual vector space V* as follows:
pi(g)=p"(97")

Motivation: we want the two representations of G to respect the natural pairing ( , ) between
V* and V like (If I do transformations in both V and V' * using representations of the same group

element, then nothing should be changed)

(P*(9)v*, plg)w) = (v*, (p") " (9)p(9)w) = (v*,w)

This in turn forces us to define the dual representation by

(P ) (9)plg) =1 = p*(g) =p"(g7")

Of course the representation p and its dual representation p* have the same dimension



1.4 Characters

Now the linaer map from V' to W can be written in a much more fancy way as
Hom(V,\W)=V*@ W (1.8)

which eats a vetor in V' and output a vector in W. Obviously, V* ® W is also a representation
space of G. If we view an element of Hom(V, W) as a linear map ¢ from V to W, we have

(denote p(g) = g for convenience)
9¢ =g(v" @ w) = (9v°) ® (qw)
(99)(vo) = [(9v*) ® (gw)]vo = [(v*) ® (gw)](9~ o) = gd(g~ vo) = (99~ ") (wo)
We have

pvew (9)0 = pw(9)dpv(g™")

The map ¢ here may not be a G-linear map. The commutative diagram below tells us that we

must have g¢ = ¢ if ¢ is a G-linear map.

¢
V——— =W
g g
99

1.4 Characters

Let p : G — GL(V) be a linear representation of a finite group G in the vector space V.
For each g € G, define the complex valued function

Xp(g) = Tr(Pg)

as the character of the representation p

If x is the character of a representation p of degree n, its essential of trace gives the properties
below
. xp(e) =dimV =n
2. xp(97") = Xp(9)
3. Xplhgh™) = x,(9)
Remarks. If pisirreducible, the character is called simple; otherwise, itis called compound.
A function f on G satisfying identity (3), or what amounts to the same thing, f(uv) = f(vu),

is called a class function.

Let V and W be representations of G, then

XVew = XV + Xw XVoQW = XV * XW Xv* =XV



1.5 Orthogonality Relations for Characters

1.5 Orthogonality Relations for Characters

Fixed Points

Let p be a representation of group G in the vector space V, we set
¢ ={veVVge€Qq,pu=uv} (1.9)

immediately we know that V' is a subspace of V', we define the average as

Zpg (1.10)

gEG

The map ¢ is a projection of V onto V&

Suppose v = p(w ) then, Vh € G we have
1 1
PRV = a Z PhPgWw ? Z PhgW = vell Z Pgw
Ic - 1G] 2" = 6] 22
So we found that Imp € VG Conversely, if v C V¢, then

1
|G\Z”g P D
geG

then V& C Im(yp) and p? = ¢, so Imp = V& and ¢ is a projection of V onto V&,
If we just want to know the number m of copies of the trivial representation appearing in

the decomposition of V'

m = dim V¢ = ZX,, (1.11)
e poerd
If ¢ and v are two complex-valued functions on G, put
@l) = 151 Zcb (1.12)
geG
we have
= (xulxp) (1.13)

where [ is the irreducible trivial representation where we must have yy = 1.

Let p be a representation of group G in the vector space V', we have

dim VE = ]G| Z Xo(9) = (xzlxp)
geG



1.5 Orthogonality Relations for Characters

Orthogonality Relations

If V and W are representations of G, then with the representation Hom(V, W), we have
Hom¢ (V, W) = {G-linaer maps from V to W}

The discussion in section1.3 tells us that we must have g¢ = ¢ if ¢ is a G-linear map, so we have

Homg(V, W) = Hom(V, W)¢ (1.14)
Using proposition1.5, we have
. 1 _
dim Hom(V, W) = @l > xv(@xw(9) = (xvixw) (1.15)
geG

If V is irreducible, then, by Schur’s lemma, we have
dim Homg (V, W) = the multiplicity of V in W
Similarly if W is irreducible, we have
dim Homg (V, W) = the multiplicity of W in V'
If both V and W are irreducible, we have
1 v=w

dim Homg(V, W) =
0 Vzw

In terms of this inner product, the characters of the irreducible representations of G are
orthonormal. If x and X' are the characters of two nonisomorphic irreducible represen-

tations, we have
LIxIlP = (xlx) =1
2. (xIx) =0

Ifv = Vl@al + -4 Vk@a’“, with the V; distinct irreducible representations, we have the

following corollaries.

Any representation is determined by its character

Indeed if V = V{"** + -+ + V,7** we have
X = Z Q4 X
%

where the x; are orthonormal.

This tells us that
(xilx) = i

which leads to the two following corollaries



1.6 Decomposition of Representations

Corollary 1.4.

IfV = Vleaal qFcooF Vkeaa’“ , with the V; distinct irreducible representations, we have
1. The multiplicity c;; of Vi in V is a; = {xi|x)
2. A representation V' is irreducible if and only if (x|x) = 1

1.6 Decomposition of Representations

Decomposition of Regular Representations

The character rg of a regular representation is given by

ra(e) = |G| rc(g9) =0(g9 #e)

Proof If we use matrix representation, the regular representation will be in forms of permutation

matrix. For any basis e, and t # e, e4, preg = eig 7 €4, it is easy to get
ra(g) =0
Fort = e, e4, peey = €4, We have

rag(e) =TrI =dim R = |G|

Theorem 1.5.

IfV = V1®a1 qFcoooF V,fBa’“ , with the V; distinct irreducible representations, we have
1. Every irreducible representation V; is contained in the regular representation R
with multiplicity equal to its degree n;

2. The degrees n; satisfy the relation

> ni=1G|
i
3. Ifg € G and g # e, then

Z anz =0

Proof (1) The multiplicity is equal to (ra|x:), we have

(xilra) = Zrc 9x9) = 75 L (Glxi(e) = mi
Gl = ~ Gl
(2,3) By (1) we have,
TG(S) Z <X’L|7’G Xz Z anz
geG geq

If s # e, we have

= Z nixi(s) =0

geG



1.6 Decomposition of Representations

If s = e, we have

= ZmXi(S) = |G|

geG

Compleness of Characters

Theorem 1.6.

Let f : G — C be any function on the group G, and for any representation V of G set

drv=>_ fgpv(g)

geG
a function fromV.— V. Then ¢y is G-linear for all V if and only if f is a class function.

Q©

Proof ForVh € G and Vv € V', we have

drvov(B)o =Y f(9)pv(g9)ov(R)o = f(g)pv(gh)v

9€G geG
substituting hgh~! for g we have
drvpv(h)o = f(hgh™V)pv(hg)v = py(h) > f(hgh™")pv(g)v
geG geG
If f is class function we have f(hgh~!) = f(g) which leads to

drvpv(h)o =py(h) Y f(9)pvigv = pv(h)syv
geG

so we have

drvov(h) =pv(h)psv

Conversely, if ¢y is G-linear, we have
> f@)pvigh) =Y flg)pv(hg)
geG geq
substituting hgh~! for g on the left-hand side we have

> flhgh ™ )pv(hg) = fg)pv(hg)

9eG geG
The equation holds for VA € G so we must have

f(hgh™) = f(g)

Corollary 1.5.

The characters of irreducible representations of G { Xi}le form an orthonormal basis for

CI(Q) (Vector space of all the calss function) %

Proof Suppose f : G — Cis a class function and (f|x) = 0 for an irreducible representations
V', we must show that f = 0. So consider the G-linaer map

drv = f(9)pv(g)

geG



1.7 Induced Representations

By Schur’s lemma, we have ¢7y = AI. If n = dim V, then

G G
_ L if’v = ‘n’ > Flox(g) = ’n|

geG

A (flx)=0

Then ¢y = 0 for any irreducible representation V' of G. In particular, this will be true for the
regular representation R. But in R the elements g € G, thought of as elements of End(R), are

linearly independent.

drren=Y_ [ (@pr(@)en =D [*(g)eg=0

geG geq
so f* = f = 0 and the proof is complete.

The number of irreducible representations of G is equal to the number of conjugacy classes

of G

The class function yeilds

f(hgh™) = f(g)

So all elements in the same conjugacy calss has the same character.

Let g € G, and let ¢(g) be the number of elements in the conjugacy class of g

1. we have @
Z =x; (9)xi(g) = @

3

2. For s € GG not conjugate to g, we have

> =xilg)*xi(h) =0

)

Let f; be the function equal to 1 on the class of s and equal to O elsewhere.

1 g inthe class of s

fs(g) =

0 Otherwise

Since it is a class function, it can be written as

ﬂ:Zummiwmmm:ﬁ%m>

(2
then, for g in the class of s we have fs(g) = 1 and

Z=mmm=2mmmz£g

g

for g not in the class of s we have fs(g) = 0 and

> =xi(s)xilg) =0

i

10



1.7 Induced Representations

1.7 Induced Representations

Induced Representations

Let GG be a group and p is a linear representation of it on the vector space V. Let H be a
subgroup of G, then the representation can be naturally restricted on H to get a representation of
H, denoted as pg. Conversely if we have a representation of H, how can we get the representation
of G?

Let s € G, the vector space

psW = {pswjw € W} (1.16)
depends only on the left coset sH. Indeed, if we replace s by st, with t € H, we have
pstW = psptW = psW (1.17)

If o is a left coset of H, we can thus define a subspace W, of V' to be p;W for any s € o.

We say that the representation p of G in'V is induced by the representation 0 of H in W if

V:@Wg

ceG/H
In this case we write
V=Ind4W=IndW W =Res% V=ResV (1.18)
Notice that
dim W, = dim(psW) = dim W (1.19)
We have
dimV =[G : H|-dim W (1.20)

Existence and Uniqueness of Induced Representations
We claim that, given arepresentation W of H, such V exists and is unique up to isomorphism
Let W be a representation of H, U a representation of G, and suppose V.= Ind W. Then
any H-module homomorphism ¢ : W — U extends uniquely to a G-module homomor-

phism ¢' -V — U
Homp (W, Res U) = Homg(Ind W,U)

In particular, this universal property determines Ind W up to canonical isomorphism

define ¢' on W, as



1.7 Induced Representations

which is independent of the representative g, for o since ¢ is H-linear

Characters of Induced Representations

Note that g € G' maps W, to W, so the trace is calculated from those cosets

xvig) =D xw(s'gs) (¥s€o)

go=0o
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