
Chapter 1 Representations of Finite Groups

1.1 Linear Representatuions

Group Representations

Definition 1.1.

♣

Let V be a vector space over the field C of complex numbers and let GL(V ) be the group

of isomorphisms of V onto itself.

Suppose now G is a finite group. A linear representation of G in V is a homomorphism

ρ : G→ GL(V ). When ρ is given, we say that V is a representation space of G, or even

simply, a representation of G.

In the following discussions, we restrict ourselves to the case where V has finite dimension.

Definition 1.2.

♣

A subrepresentation of a representation V is a vector subspaceW of V which is invariant

under the action ofG. The restriction of ρW of ρ to the is then an isomorphism ofW onto

itself. Then ρW : G→ GL(W ) a linear representation of G in W .

We have a very basic but important theory of subrepresentations

Theorem 1.1.

♡

Let ρ : G → GL(V ) be a linear representation of G in V and let W be a invariant

subspace of V under G. Then there exists a complement W0 of W in V which is also

invariant under G, so that V =W ⊕W 0.

Proof For convenience, denote ρ(g) as g. Let π0 : V → W be a projection, we can construct

the average of the map

π =
1

|G|
∑
g∈G

gπg−1

For w ∈W

gπ0g
−1w = g(π0(g

−1w)) = gg−1w = w

so πw = w. Since π0 maps V into W and g preserves W , then π is also a projection, and we

have

πgw = gw = gπw ⇒ πg = gπ

If now x ∈W 0, ∀g ∈ G we have

π(gx) = g(πx) = 0

which shows that W 0 is invariant under G



1.1 Linear Representatuions

Faithful Representations: A linear representation in which different elements g of G are

represented by distinct linear mappings ρ(g). In more abstract language, this means that the

group homomorphism ρ : G→ GL(V ) is injective.

Regular Representations: A linear representation afforded by the group action of G on

itself by translation.

Unitary Representations: A linear representation ρ of G on a complex Hilbert space H

such that ∀g ∈ G, ρ(g) is a unitary operator, denoted RG.

Trivial Representations: A representation (V, ρ) of a groupG on which all elements ofG

act as the identity mapping of V .

Group Algebras and Regular Representations

Definition 1.3.

♣

The group algebra AG of G is the set of formal linear combinations

v =
∑
g∈G

c(g)g

All g ∈ G are considered to be linearly independent, which can be viewed as basis of AG

Hence, we have

dim AG = |G| (1.1)

Definition 1.4.

♣

The regular representation R : G → GL(AG) is the representation of the group on its

own algebra, defined by

R(g)v = gv =
∑
s∈G

c(s)(gs)

Direct Sums and Tensor Products

Let (V1, ρ1) and (V2, ρ2) be two linear representations of a group G. Their direct sum is

the direct sum of vector spaces V1 ⊕ V2 with the linear action of G uniquely determined by the

condition that

ρV1⊕V2(g)(v1, v2) = (ρV1 ⊕ ρV2)(g)(v1, v2) = (ρV1(g)v1, ρV2(g)v2) (1.2)

and the matrix representation can be written in diagnolized form

ρV1⊕V2(g) =

ρV1(g)

ρV2(g)

 (1.3)

Their tensor product is the tensor product of vector spaces V1 ⊗ V2 with the linear action of

G uniquely determined by the condition that

ρV1⊗V2(g)(v1 ⊗ v2) = (ρV1 ⊗ ρV2)(g)(v1 ⊗ v2) = ρV1(g)v1 ⊗ ρV2(g)v2 (1.4)
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1.2 Irreducible Representations and Schur’s Lemma

To write this down more explicitly we introduce the Kronecker product of an n × n matrix A

and an m×m matrix B as

A⊗B =


A11B A12B · · ·
A21B A22B · · ·

...
... . . .

 (1.5)

If V and W are representations, the direct sum V ⊕W and the tensor product V ⊗W are

also representations.

dim(V1 ⊗ V2) = (dimV1)(dimV2) (1.6)

dim(V1 ⊕ V2) = dimV1 + dimV2 (1.7)

Exterior Powers and Symmetric Powers

The exterior powers ∧nV (or alternating power AltnV ) and symmetric powers SymnV are

subrepresentations of V ⊗n.

1.2 Irreducible Representations and Schur’s Lemma

Irreducible Representations

Definition 1.5.

♣

Let ρ : G → GL(V ) be a linear representation of G. We say that it is irreducible if V

has no nontrivial invariant subspace. Of course if V has nontrivial invariant subspaces,

it is reducible.

Corollary 1.1.

♡Every representation is a direct sum of irreducible representations.

Proof Using Thm1.1 we can decompose V into an irreducible representations and its comple-

ment W 0. If W 0 is irreducible then it is over. If not, just apply Thm1.1 again on W 0 and repeat

this process until all the subrepresentations is irreducible.

This property is called complete reducibility, which tells us that every representation can

be decompose into some irreducible representations by direct sum.

Schur’s Lemma

Theorem 1.2.
If V and W are irreducible representations of G and ϕ : V → W is a linear map such

that ρV ϕ = ϕρW , then

1. Either ϕ is an isomorphism. or ϕ = 0

2. If V =W , then ϕ = λI for some λ ∈ C, we say that ϕ is a homothety
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1.3 Dual Representations

♡

V

V W

W

ϕ

ϕ

ρV ρW

Proof (1) Notice that Kerϕ and Imϕ are invariant subspaces, and V and W are irreducible

representations. So either Kerϕ = V , Imϕ = 0 or Kerϕ = 0, Imϕ = W , which lead to the

statement that either ϕ is an isomorphism. or ϕ = 0.

(2) If V = W , since C is algebraically closed, there exists at least one eigenvalue of ϕ,

says λ. As a result, ϕ − λI has a nonzero kernel, immediately (1) tells us that ϕ − λI = 0, so

ϕ = λI .

We will call the map ϕ a G-linear map when we want to distinguish it from an arbitrary

linear map between the vector spaces V and W .

Corollary 1.2.

♡All irreducible representations of an abelian group are one-dimensional.

Proof For abelian group we have

ρ(g1)ρ(g2) = ρ(g2)ρ(g1)

Using Schur’s lemma we have ρ(g) = λI , which leads to the representation is one-dimensional.

1.3 Dual Representations

Definition 1.6.

♣

Let G be a group and ρ is a linear representation of it on the vector space V , then the

dual representation ρ∗ is defined over the dual vector space V ∗ as follows:

ρ∗(g) = ρT (g−1)

Motivation: we want the two representations ofG to respect the natural pairing ( , ) between

V ∗ and V like (If I do transformations in both V and V ∗ using representations of the same group

element, then nothing should be changed)

(ρ∗(g)v∗, ρ(g)w) = (v∗, (ρ∗)T (g)ρ(g)w) = (v∗, w)

This in turn forces us to define the dual representation by

(ρ∗)T (g)ρ(g) = I ⇒ ρ∗(g) = ρT (g−1)

Of course the representation ρ and its dual representation ρ∗ have the same dimension
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1.4 Characters

Now the linaer map from V to W can be written in a much more fancy way as

Hom(V,W ) = V ∗ ⊗W (1.8)

which eats a vetor in V and output a vector in W . Obviously, V ∗ ⊗W is also a representation

space of G. If we view an element of Hom(V,W ) as a linear map ϕ from V to W , we have

(denote ρ(g) = g for convenience)

gϕ = g(v∗ ⊗ w) = (gv∗)⊗ (gw)

(gϕ)(v0) = [(gv∗)⊗ (gw)]v0 = [(v∗)⊗ (gw)](g−1v0) = gϕ(g−1v0) = (gϕg−1)(v0)

We have

ρV ∗⊗W (g)ϕ = ρW (g)ϕρV (g
−1)

The map ϕ here may not be a G-linear map. The commutative diagram below tells us that we

must have gϕ = ϕ if ϕ is a G-linear map.

V

V W

W
ϕ

gϕ

g g

1.4 Characters

Definition 1.7.

♣

Let ρ : G→ GL(V ) be a linear representation of a finite group G in the vector space V .

For each g ∈ G, define the complex valued function

χρ(g) = Tr(ρg)

as the character of the representation ρ

Ifχ is the character of a representation ρ of degreen, its essential of trace gives the properties

below

1. χρ(e) = dimV = n

2. χρ(g
−1) = χ̄ρ(g)

3. χρ(hgh
−1) = χρ(g)

Remarks. If ρ is irreducible, the character is called simple; otherwise, it is called compound.

A function f on G satisfying identity (3), or what amounts to the same thing, f(uv) = f(vu),

is called a class function.

Proposition 1.1.

♠

Let V and W be representations of G, then

χV⊕W = χV + χW χV⊗W = χV · χW χV ∗ = χ̄V
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1.5 Orthogonality Relations for Characters

Proof

1.5 Orthogonality Relations for Characters

Fixed Points

Let ρ be a representation of group G in the vector space V , we set

V G = {v ∈ V |∀g ∈ G, ρgv = v} (1.9)

immediately we know that V G is a subspace of V , we define the average as

φ =
1

|G|
∑
g∈G

ρg (1.10)

Theorem 1.3.

♡The map φ is a projection of V onto V G

Proof Suppose v = φ(w), then, ∀h ∈ G we have

ρhv =
1

|G|
∑
g∈G

ρhρgw =
1

|G|
∑
g∈G

ρhgw =
1

|G|
∑
g∈G

ρgw = v

So we found that Imφ ∈ V G. Conversely, if v ⊂ V G, then

φ(v) =
1

|G|
∑
g∈G

ρgv =
1

|G|
∑
g∈G

v = v

then V G ⊂ Im(φ) and φ2 = φ, so Imφ = V G and φ is a projection of V onto V G.

If we just want to know the number m of copies of the trivial representation appearing in

the decomposition of V

m = dim V G = Tr (φ) =
1

|G|
∑
g∈G

χρ(g) (1.11)

If ϕ and ψ are two complex-valued functions on G, put

⟨ϕ|ψ⟩ = 1

|G|
∑
g∈G

ϕ∗(g)ψ(g) (1.12)

we have

m = ⟨χI |χρ⟩ (1.13)

where I is the irreducible trivial representation where we must have χI = 1.

Proposition 1.2.

♠

Let ρ be a representation of group G in the vector space V , we have

dim V G =
1

|G|
∑
g∈G

χρ(g) = ⟨χI |χρ⟩
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1.5 Orthogonality Relations for Characters

Orthogonality Relations

If V and W are representations of G, then with the representation Hom(V,W ), we have

HomG(V,W ) = {G-linaer maps from V to W}

The discussion in section1.3 tells us that we must have gϕ = ϕ if ϕ is a G-linear map, so we have

HomG(V,W ) = Hom(V,W )G (1.14)

Using proposition1.5, we have

dim Hom(V,W )G =
1

|G|
∑
g∈G

χ̄V (g)χW (g) = ⟨χV |χW ⟩ (1.15)

If V is irreducible, then, by Schur’s lemma, we have

dim HomG(V,W ) = the multiplicity of V in W

Similarly if W is irreducible, we have

dim HomG(V,W ) = the multiplicity of W in V

If both V and W are irreducible, we have

dim HomG(V,W ) =

1 V ∼=W

0 V ≇W

Theorem 1.4.

♡

In terms of this inner product, the characters of the irreducible representations of G are

orthonormal. If χ and χ′ are the characters of two nonisomorphic irreducible represen-

tations, we have

1. ||χ||2 = ⟨χ|χ⟩ = 1

2. ⟨χ|χ′⟩ = 0

If V = V ⊕α1
1 + · · · + V ⊕αk

k , with the Vi distinct irreducible representations, we have the

following corollaries.

Corollary 1.3.

♡Any representation is determined by its character

Proof Indeed if V = V ⊕α1
1 + · · ·+ V ⊕αk

k , we have

χ =
∑
i

αiχi

where the χi are orthonormal.

This tells us that

⟨χi|χ⟩ = αi

which leads to the two following corollaries
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1.6 Decomposition of Representations

Corollary 1.4.

♡

If V = V ⊕α1
1 + · · ·+ V ⊕αk

k , with the Vi distinct irreducible representations, we have

1. The multiplicity αi of Vi in V is αi = ⟨χi|χ⟩
2. A representation V is irreducible if and only if ⟨χ|χ⟩ = 1

1.6 Decomposition of Representations

Decomposition of Regular Representations

Proposition 1.3.

♠

The character rG of a regular representation is given by

rG(e) = |G| rG(g) = 0 (g ̸= e)

Proof If we use matrix representation, the regular representation will be in forms of permutation

matrix. For any basis eg and t ̸= e, eg, ρteg = etg ̸= eg, it is easy to get

rG(g) = 0

For t = e, eg, ρeeg = eg, we have

rG(e) = Tr I = dim R = |G|

Theorem 1.5.

♡

If V = V ⊕α1
1 + · · ·+ V ⊕αk

k , with the Vi distinct irreducible representations, we have

1. Every irreducible representation Vi is contained in the regular representation R

with multiplicity equal to its degree ni
2. The degrees ni satisfy the relation ∑

i

n2i = |G|

3. If g ∈ G and g ̸= e, then ∑
i

niχi(g) = 0

Proof (1) The multiplicity is equal to ⟨rG|χi⟩, we have

⟨χi|rG⟩ =
1

|G|
∑
g∈G

r̄G(g)χi(g) =
1

|G|
|G|χi(e) = ni

(2,3) By (1) we have,

rG(s) =
∑
g∈G

⟨χi|rG⟩χi(s) =
∑
g∈G

niχi(s)

If s ̸= e, we have

rG(s) =
∑
g∈G

niχi(s) = 0
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1.6 Decomposition of Representations

If s = e, we have

rG(s) =
∑
g∈G

niχi(s) = |G|

Compleness of Characters

Theorem 1.6.

♡

Let f : G→ C be any function on the group G, and for any representation V of G set

ϕf,V =
∑
g∈G

f(g)ρV (g)

a function from V → V . Then ϕf,V is G-linear for all V if and only if f is a class function.

Proof For ∀h ∈ G and ∀v ∈ V , we have

ϕf,V ρV (h)v =
∑
g∈G

f(g)ρV (g)ρV (h)v =
∑
g∈G

f(g)ρV (gh)v

substituting hgh−1 for g we have

ϕf,V ρV (h)v =
∑
g∈G

f(hgh−1)ρV (hg)v = ρV (h)
∑
g∈G

f(hgh−1)ρV (g)v

If f is class function we have f(hgh−1) = f(g) which leads to

ϕf,V ρV (h)v = ρV (h)
∑
g∈G

f(g)ρV (g)v = ρV (h)ϕf,V v

so we have

ϕf,V ρV (h) = ρV (h)ϕf,V

Conversely, if ϕf,V is G-linear, we have∑
g∈G

f(g)ρV (gh) =
∑
g∈G

f(g)ρV (hg)

substituting hgh−1 for g on the left-hand side we have∑
g∈G

f(hgh−1)ρV (hg) =
∑
g∈G

f(g)ρV (hg)

The equation holds for ∀h ∈ G so we must have

f(hgh−1) = f(g)

Corollary 1.5.

♡

The characters of irreducible representations ofG {χi}ki=1 form an orthonormal basis for

Cl(G) (Vector space of all the calss function)

Proof Suppose f : G→ C is a class function and ⟨f |χ⟩ = 0 for an irreducible representations

V , we must show that f = 0. So consider the G-linaer map

ϕf,V =
∑
g∈G

f∗(g)ρV (g)
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1.7 Induced Representations

By Schur’s lemma, we have ϕf,V = λI . If n = dim V , then

λ =
Tr ϕf,V
n

=
|G|
n

∑
g∈G

f∗(g)χ(g) =
|G|
n

⟨f |χ⟩ = 0

Then ϕf,V = 0 for any irreducible representation V of G. In particular, this will be true for the

regular representation R. But in R the elements g ∈ G, thought of as elements of End(R), are

linearly independent.

ϕf,Reh =
∑
g∈G

f∗(g)ρR(g)eh =
∑
g∈G

f∗(g)eg = 0

so f∗ = f = 0 and the proof is complete.

Corollary 1.6.

♡

The number of irreducible representations ofG is equal to the number of conjugacy classes

of G

Proof The class function yeilds

f(hgh−1) = f(g)

So all elements in the same conjugacy calss has the same character.

Corollary 1.7.

♡

Let g ∈ G, and let c(g) be the number of elements in the conjugacy class of g

1. we have ∑
i

= χ∗
i (g)χi(g) =

|G|
c(g)

2. For s ∈ G not conjugate to g, we have∑
i

= χi(g)
∗χi(h) = 0

Proof Let fs be the function equal to 1 on the class of s and equal to 0 elsewhere.

fs(g) =

1 g in the class of s

0 Otherwise

Since it is a class function, it can be written as

fs =
∑
i

⟨χi|fs⟩χi with ⟨χi|fs⟩ =
c(s)

|G|
χ∗
i (s)

then, for g in the class of s we have fs(g) = 1 and∑
i

= χ∗
i (s)χi(g) =

∑
i

χ∗
i (s)χi(s) =

|G|
c(s)

for g not in the class of s we have fs(g) = 0 and∑
i

= χ∗
i (s)χi(g) = 0
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1.7 Induced Representations

1.7 Induced Representations

Induced Representations

Let G be a group and ρ is a linear representation of it on the vector space V . Let H be a

subgroup ofG, then the representation can be naturally restricted onH to get a representation of

H , denoted as ρH . Conversely if we have a representation ofH , how can we get the representation

of G?

Let s ∈ G, the vector space

ρsW = {ρsw|w ∈W} (1.16)

depends only on the left coset sH . Indeed, if we replace s by st, with t ∈ H , we have

ρstW = ρsρtW = ρsW (1.17)

If σ is a left coset of H , we can thus define a subspace Wσ of V to be ρsW for any s ∈ σ.

Definition 1.8.

♣

We say that the representation ρ ofG in V is induced by the representation θ ofH inW if

V =
⊕

σ∈G/H

Wσ

In this case we write

V = IndGH W = Ind W W = ResGH V = Res V (1.18)

Notice that

dim Wσ = dim(ρsW ) = dim W (1.19)

We have

dim V = [G : H] · dim W (1.20)

Existence and Uniqueness of Induced Representations

We claim that, given a representationW ofH , suchV exists and is unique up to isomorphism

Theorem 1.7.

♡

LetW be a representation ofH , U a representation ofG, and suppose V = IndW . Then

any H-module homomorphism ϕ : W → U extends uniquely to a G-module homomor-

phism ϕ′ : V → U

HomH(W,Res U) = HomG(Ind W,U)

In particular, this universal property determines Ind W up to canonical isomorphism

Proof define ϕ′ on Wσ as
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1.7 Induced Representations

Wσ W U U

ϕ′

ϕg−1
σ

gσ

which is independent of the representative gσ for σ since ϕ is H-linear

Characters of Induced Representations

Note that g ∈ G maps Wσ to Wgσ, so the trace is calculated from those cosets

χV (g) =
∑
gσ=σ

χW (s−1gs) (∀s ∈ σ)

12


	1 Representations of Finite Groups
	1.1 Linear Representatuions
	1.2 Irreducible Representations and Schur's Lemma
	1.3 Dual Representations
	1.4 Characters
	1.5 Orthogonality Relations for Characters
	1.6 Decomposition of Representations
	1.7 Induced Representations


