
Chapter 1 Group Structures

1.1 Group Actions

Definition 1.1.

♣

An action of a group G on a set S is a function ρ : G × S → S (usually denoted by

ρ(g, x) = gx for convenience) such that lor all x ∈ S and g1, g2 ∈ G

ex = x (g1g2)x = g1(g2x)

When such an action is given, we say that G acts on the set S

A very important application of group action is a group acts on itself, we have two kinds of

group action

1. Left multiplication: ρ(g, x) = gx

2. Adjoint multiplication(Conjugation): ρ(g, x) = gxg−1

Theorem 1.1.

♥

Let G be a group that acts on a set S, we have

1. Equivalence class: x ∼ x′ ⇔ gx = x′ for some g ∈ G

2. For each x ∈ S, Gx = {g ∈ G|gx = x} is a subgroup of G

The proof is easy. In Thm1.1, the equivalence classes is called the orbits of G on S, denote

as Ox. The subgroup Gx is called the stabilizer of x.

Definition 1.2.

♣

The definition of orbits, stabilizers and fixed points

1. Orbit: Ox = {gx|g ∈ G}
2. Stabilizer: Gx = {g ∈ G|gx = x}
3. Fixed points: Z = {x ∈ S|∀g ∈ G, gx = x}

By definition, the orbit of a fixed point z ∈ Z is the fixed point itself.

Theorem 1.2. I

♥

a group G acts on a set S

1. For x ∈ S, the cardinal number of the orbit Ox is the index [G : Gx]

2. If Ox1 , · · · ,Oxn(xi ∈ G) are the distinct orbits of S, then

|S| =
∑
i

|Oxi | =
∑
i

[G : Gxi ]

Proof Let g, h ∈ G. Since

gx = hx ⇔ h−1gx = x ⇔ h−1g ∈ Gx ⇔ gGx = hGx



1.2 Conjugacy Class

it follows that the map given by gGx → gx is a well-defined bijection of the set of cosets of Gx

onto the orbit Ox. Hence |Ox| = [G : Gx]. Furthermore, by applying Lagrange Thm

|Ox| = [G : Gx] = |G|/|Gx| ⇒ |G| = |Ox||Gx|

Theorem 1.3.

♥

If a group G acts on a set S, then this action induces a homomorphism ϕ : G → A(S),

where A(S) is the group of all permutations of S.

Theorem 1.4.

♥

Let G be a p-group that acts on set S,then

|S| ≡ |Z(G)| mod p

Proof Because G is a p-group, so all the subgroups of G is p-group, then all the stabilizers

Gx are p-groups. Using Thm1.1, if Ox1 , · · · ,Oxn(xi ∈ G) are the distinct orbits of S and

|Oxi | > 1, we have

|S| = |Z(G)|+
∑
i

[G : Gxi ]

because

[G : Gxi ] ≡ 0 mod p

then

|S| ≡ |Z(G)| mod p

1.2 Conjugacy Class

Now we begin to consider the group acts on itself, which means S = G. The left multipli-

cation is trivial, the only one orbit is group G itself, and the stabilizer is {e}.

Theorem 1.5.

♥

If G is a group, then there is a monomorphism ϕ : G → A(S). Hence every group is

isomorphic to a group of permutations. In particular every finite group is isomorphic to

a subgroup of Sn with n = |G|

Proof Let G act on itself by left translation and apply Thm1.1 to obtain a homomorphism.

The much more special case is adjoint multiplication, ρ(g, x) = gxg−1. The equivalence

class now becomes conjugacy calss, the stabilizer becomes centralizer and the fixed points

becomes center.

Definition 1.3.
Let G be a group and H a subgroup of G. If H acts on G by conjugation, for x ∈ G, we

define
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1.3 Group Actions on Subsets of Groups

♣

1. Conjugacy calss of x in H: [x]H = {hxh−1|h ∈ H}
2. Centralizer of x in H: CH(x) = {h ∈ H|hxh−1 = x}
3. Center of H: C(G) = {x ∈ G|∀g ∈ G, gxg−1 = x}

We immediately get the conjugate version of Thm1.1

Corollary 1.1.

♥

Let G be a group

1. For each g ∈ G, conjugation by g induces an automorphism of G.

2. There is a homomorphism ϕ : G → Aut(G) whose kernel is C(G)

Proof (1) If G acts on itself by conjugation, then for each g ∈ G, the map φg : G → G given

by ϕg(x) = gxg−1 is a bijection by the proof of Thm1.1. It is easy to see that φg is also a

homomorphism and hence an automorphism.

(2) By (1) we have φg ∈ Aut(G), clearly

g ∈ Kerϕ ⇔ φg = id ⇔ ∀x ∈ G, gxg−1 = x ⇔ g ∈ C(G)

Corollary 1.2.

♥

Let G be a finite group and K a subgroup of G

1. The number of elements in the conjugacy class of x ∈ G is [G : CG(x)]

2. if[x1], · · · , [xn](xi ∈ G) are the distinct conjugacy classes of G, then

|G| =
∑
i

|[xi]| =
∑
i

[G : CG(xi)]

1.3 Group Actions on Subsets of Groups

Now we move Further for group G acts on set S of some subsets of G.

Theorem 1.6.

♥

Let H be a subgroup of group G and let G act on the set S of all left cosets of H in

G by left translation. Then the kernel of the induced homomorphism ϕ : G → A(S) is

contained in H .

Proof The induced homomorphism ϕ : G → A(S) is given by ϕ(g) = τg, where τg(xH) =

gxH . If g ∈ Kerϕ, then τg = idS and for ∀x ∈ G we have

τg(xH) = gxH = xH

In particular for x = e we have

gH = H ⇒ g ∈ H
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1.4 Automorphisms and Semidirect Product

Definition 1.4.

♣

Let G be a group and H a subgroup of G. If H acts on S by conjugation, for K ∈ S, we

define the normalizer of K in H as NH(K) = {h ∈ H|hKh−1 = K} = {h ∈ H|hK =

Kh}

1.4 Automorphisms and Semidirect Product

Automorphisms

An automorphism in the form of conjugate is called an inner automorphism, and the

remaining automorphisms are said to be outer

Semidirect Product

Let N be a normal subgroup of G. Each element g ∈ G defines an automorphism of N ,

n → gng−1, and this defines a homomorphism

θ : G → Aut(N), g 7→ ig|N (1.1)

If there exists a subgroup Q of G such that G → G/N maps Q isomorphically onto G/N , then

we can reconstruct G from N,Q, and the restriction of θ to Q. Indeed, an element g of G can be

written uniquely in the form

g = nq (1.2)

If g = nq and g′ = n′q′, then

gg′ = nqn′q′ = n(qn′q−1)qq′ = nθq(n
′) · qq′ (1.3)

Further more, θ is the identity map iff that Q,N are normal subgroups

Proof Suppose that Q,N are normal subgroups, then

qnq−1 = n′ ⇒ q(nq−1n−1) = n′n−1 ⇒ qq′ = n′n−1 = e ⇒ θq(n) = qnq−1 = n

Suppose that θ is the identity map, then

qnq−1 = n ⇒ qn = nq ⇒ nqn−1 = q

So, under the condition, the semidirect product becomes direct product.

Notes: If we have a subgroup Q ∼= G/N , then we can use semidirect product to construct

group G

Example 1.1 (Dn, An)

(a) In Dn, all the ratation forms 〈R〉 and all the reflection forms r 〈R〉 with the relation

Rn = r2 = (Rr)2 = e ⇒ rRr = R−1

So we have

Dn = 〈R〉⋊ 〈r〉 = Cn ⋊ C2 θr(R
n) = R−n

4



1.4 Automorphisms and Semidirect Product

(b) Notice that An is a normal subgroup of Sn

C2 = {e, (12)} ∼= Sn/An ⇒ Sn = An ⋊ C2
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