# **Chapter 1 Group Structures**

## 1.1 Group Actions

#### **Definition 1.1.**

An action of a group G on a set S is a function  $\rho: G \times S \to S$  (usually denoted by  $\rho(g,x) = gx$  for convenience) such that lor all  $x \in S$  and  $g_1, g_2 \in G$ 

$$ex = x \qquad (g_1g_2)x = g_1(g_2x)$$

When such an action is given, we say that G acts on the set S

A very important application of group action is a group acts on itself, we have two kinds of group action

- 1. Left multiplication:  $\rho(g, x) = gx$
- 2. Adjoint multiplication(Conjugation):  $\rho(g,x) = gxg^{-1}$

### Theorem 1.1.

Let G be a group that acts on a set S, we have

- 1. Equivalence class:  $x \sim x' \Leftrightarrow gx = x'$  for some  $g \in G$
- 2. For each  $x \in S$ ,  $G_x = \{g \in G | gx = x\}$  is a subgroup of G

The proof is easy. In Thm1.1, the equivalence classes is called the orbits of G on S, denote as  $\mathcal{O}_x$ . The subgroup  $G_x$  is called the stabilizer of x.

### **Definition 1.2.**

The definition of orbits, stabilizers and fixed points

- 1. Orbit:  $\mathcal{O}_x = \{gx | g \in G\}$
- 2. Stabilizer:  $G_x = \{g \in G | gx = x\}$
- 3. Fixed points:  $Z = \{x \in S | \forall g \in G, gx = x\}$

By definition, the orbit of a fixed point  $z \in Z$  is the fixed point itself.

### Theorem 1.2. I

a group G acts on a set S

- 1. For  $x \in S$ , the cardinal number of the orbit  $\mathcal{O}_x$  is the index  $[G:G_x]$
- 2. If  $\mathcal{O}_{x_1}, \dots, \mathcal{O}_{x_n}(x_i \in G)$  are the distinct orbits of S, then

$$|S| = \sum_{i} |\mathcal{O}_{x_i}| = \sum_{i} [G:G_{x_i}]$$

**Proof** Let  $g, h \in G$ . Since

$$qx = hx \Leftrightarrow h^{-1}qx = x \Leftrightarrow h^{-1}q \in G_x \Leftrightarrow qG_x = hG_x$$

 $\Diamond$ 

 $\Diamond$ 

it follows that the map given by  $gG_x \to gx$  is a well-defined bijection of the set of cosets of  $G_x$  onto the orbit  $\mathcal{O}_x$ . Hence  $|\mathcal{O}_x| = [G:G_x]$ . Furthermore, by applying Lagrange Thm

$$|\mathcal{O}_x| = [G:G_x] = |G|/|G_x| \Rightarrow |G| = |\mathcal{O}_x||G_x|$$

#### Theorem 1.3.

If a group G acts on a set S, then this action induces a homomorphism  $\phi: G \to A(S)$ , where A(S) is the group of all permutations of S.

### Theorem 1.4.

Let G be a p-group that acts on set S,then

$$|S| \equiv |Z(G)| \mod p$$

**Proof** Because G is a p-group, so all the subgroups of G is p-group, then all the stabilizers  $G_x$  are p-groups. Using Thm1.1, if  $\mathcal{O}_{x_1}, \dots, \mathcal{O}_{x_n}(x_i \in G)$  are the distinct orbits of S and  $|\mathcal{O}_{x_i}| > 1$ , we have

$$|S| = |Z(G)| + \sum_{i} [G:G_{x_i}]$$

because

$$[G:G_{x_i}] \equiv 0 \mod p$$

then

$$|S| \equiv |Z(G)| \mod p$$

# 1.2 Conjugacy Class

Now we begin to consider the group acts on itself, which means S = G. The left multiplication is trivial, the only one orbit is group G itself, and the stabilizer is  $\{e\}$ .

### Theorem 1.5.

If G is a group, then there is a monomorphism  $\phi: G \to A(S)$ . Hence every group is isomorphic to a group of permutations. In particular every finite group is isomorphic to a subgroup of  $S_n$  with n = |G|

**Proof** Let G act on itself by left translation and apply Thm1.1 to obtain a homomorphism.

The much more special case is adjoint multiplication,  $\rho(g,x) = gxg^{-1}$ . The equivalence class now becomes conjugacy calss, the stabilizer becomes centralizer and the fixed points becomes center.

#### **Definition 1.3.**

Let G be a group and H a subgroup of G. If H acts on G by conjugation, for  $x \in G$ , we define

- 1. Conjugacy calss of x in H:  $[x]_H = \{hxh^{-1}|h \in H\}$
- 2. Centralizer of x in H:  $C_H(x) = \{h \in H | hxh^{-1} = x\}$
- 3. Center of H:  $C(G) = \{x \in G | \forall g \in G, gxg^{-1} = x\}$



 $\Diamond$ 

We immediately get the conjugate version of Thm1.1

### Corollary 1.1.

Let G be a group

- 1. For each  $g \in G$ , conjugation by g induces an automorphism of G.
- 2. There is a homomorphism  $\phi: G \to Aut(G)$  whose kernel is C(G)

**Proof** (1) If G acts on itself by conjugation, then for each  $g \in G$ , the map  $\varphi_g : G \to G$  given by  $\phi_g(x)=gxg^{-1}$  is a bijection by the proof of Thm1.1. It is easy to see that  $\varphi_g$  is also a homomorphism and hence an automorphism.

(2) By (1) we have  $\varphi_q \in \operatorname{Aut}(G)$ , clearly

$$g \in \text{Ker}\phi \Leftrightarrow \varphi_q = \text{id} \Leftrightarrow \forall x \in G, gxg^{-1} = x \Leftrightarrow g \in C(G)$$

#### Corollary 1.2.

Let G be a finite group and K a subgroup of G

- 1. The number of elements in the conjugacy class of  $x \in G$  is  $[G:C_G(x)]$
- 2. if  $[x_1], \dots, [x_n]$  ( $x_i \in G$ ) are the distinct conjugacy classes of G, then

$$|G| = \sum_{i} |[x_i]| = \sum_{i} [G : C_G(x_i)]$$



# 1.3 Group Actions on Subsets of Groups

Now we move Further for group G acts on set S of some subsets of G.

### Theorem 1.6.

Let H be a subgroup of group G and let G act on the set S of all left cosets of H in G by left translation. Then the kernel of the induced homomorphism  $\phi: G \to A(S)$  is contained in H.

**Proof** The induced homomorphism  $\phi: G \to A(S)$  is given by  $\phi(g) = \tau_g$ , where  $\tau_g(xH) =$ gxH. If  $g \in \text{Ker}\phi$ , then  $\tau_g = \text{id}_S$  and for  $\forall x \in G$  we have

$$\tau_g(xH) = gxH = xH$$

In particular for x = e we have

$$gH = H \Rightarrow g \in H$$

#### **Definition 1.4.**

Let G be a group and H a subgroup of G. If H acts on S by conjugation, for  $K \in S$ , we define the normalizer of K in H as  $N_H(K) = \{h \in H | hKh^{-1} = K\} = \{h \in H | hK = Kh\}$ 

### 4

## 1.4 Automorphisms and Semidirect Product

### **Automorphisms**

An automorphism in the form of conjugate is called an inner automorphism, and the remaining automorphisms are said to be outer

#### **Semidirect Product**

Let N be a normal subgroup of G. Each element  $g \in G$  defines an automorphism of N,  $n \to gng^{-1}$ , and this defines a homomorphism

$$\theta: G \to \operatorname{Aut}(N), \quad g \mapsto i_g|_N$$
 (1.1)

If there exists a subgroup Q of G such that  $G \to G/N$  maps Q isomorphically onto G/N, then we can reconstruct G from N, Q, and the restriction of  $\theta$  to Q. Indeed, an element g of G can be written uniquely in the form

$$g = nq (1.2)$$

If q = nq and q' = n'q', then

$$qq' = nqn'q' = n(qn'q^{-1})qq' = n\theta_a(n') \cdot qq'$$
 (1.3)

Further more,  $\theta$  is the identity map iff that Q, N are normal subgroups

**Proof** Suppose that Q, N are normal subgroups, then

$$qnq^{-1} = n' \Rightarrow q(nq^{-1}n^{-1}) = n'n^{-1} \Rightarrow qq' = n'n^{-1} = e \Rightarrow \theta_q(n) = qnq^{-1} = n$$

Suppose that  $\theta$  is the identity map, then

$$qnq^{-1} = n \Rightarrow qn = nq \Rightarrow nqn^{-1} = q$$

So, under the condition, the semidirect product becomes direct product.

Notes: If we have a subgroup  $Q\cong G/N$ , then we can use semidirect product to construct group G

Example 1.1  $(D_n, A_n)$ 

(a) In  $D_n$ , all the ratation forms  $\langle R \rangle$  and all the reflection forms  $r \langle R \rangle$  with the relation

$$R^n = r^2 = (Rr)^2 = e \quad \Rightarrow \quad rRr = R^{-1}$$

So we have

$$D_n = \langle R \rangle \rtimes \langle r \rangle = C_n \rtimes C_2 \qquad \theta_r(R^n) = R^{-n}$$

(b) Notice that  $A_n$  is a normal subgroup of  $S_n$ 

$$C_2 = \{e, (12)\} \cong S_n/A_n \Rightarrow S_n = A_n \rtimes C_2$$