Chapter 1 Group Structures

1.1 Group Actions

An action of a group G on a set S is a function p : G x S — S (usually denoted by
p(g,x) = gx for convenience) such that lor all x € S and g1, g2 € G

exr == (9192)7 = g1(g27)

When such an action is given, we say that G acts on the set S

A very important application of group action is a group acts on itself, we have two kinds of
group action
1. Left multiplication: p(g,x) = gz

2. Adjoint multiplication(Conjugation): p(g, ) = grg~!

Let G be a group that acts on a set S, we have
I. Equivalence class: © ~ ' < gx = ' for some g € G

2. Foreachx € S, G, = {g € G|gx = x} is a subgroup of G

The proof is easy. In Thml.1, the equivalence classes is called the orbits of G on S, denote

as 0. The subgroup G, is called the stabilizer of x.

The definition of orbits, stabilizers and fixed points
1. Orbit: O, = {gzx|g € G}
2. Stabilizer: G, = {g € G|gz = x}
3. Fixed points: Z = {x € S|Vg € G, gx = x}

By definition, the orbit of a fixed point z € Z is the fixed point itself.

a group G acts on a set S
I. For x € S, the cardinal number of the orbit O, is the index |G : G
2. IfOyyy -+, Oy, (z; € G) are the distinct orbits of S, then

51 =210 = > _[G: Gz

Letg,h € G. Since

gr=hz e hlgz=c< hlge G, & gGy = hG,



1.2 Conjugacy Class

it follows that the map given by gG, — gz is a well-defined bijection of the set of cosets of G,

onto the orbit O,. Hence |0, | = [G : G;]. Furthermore, by applying Lagrange Thm
0| =[G : Ga] = |G|/|Gz| = |G| = |Ox|Ga]

If a group G acts on a set S, then this action induces a homomorphism ¢ : G — A(S),

where A(S) is the group of all permutations of S.

Let G be a p-group that acts on set S,then

S| =12(G)| mod p

Because G is a p-group, so all the subgroups of G is p-group, then all the stabilizers
G, are p-groups. Using Thml.1, if O,y ,---,0,, (z; € G) are the distinct orbits of S and
|Og,| > 1, we have
S| =12(&)| + > _[G : Ga;]
i

because
[G:Gy]=0 modp

then
S| =1Z(G)| mod p

1.2 Conjugacy Class

Now we begin to consider the group acts on itself, which means S = G. The left multipli-

cation is trivial, the only one orbit is group G itself, and the stabilizer is {e}.

If G is a group, then there is a monomorphism ¢ : G — A(S). Hence every group is
isomorphic to a group of permutations. In particular every finite group is isomorphic to

a subgroup of Sy, withn = |G|

Let G act on itself by left translation and apply Thm1.1 to obtain a homomorphism.
The much more special case is adjoint multiplication, p(g,z) = gzg~!. The equivalence
class now becomes conjugacy calss, the stabilizer becomes centralizer and the fixed points

becomes center.

Let G be a group and H a subgroup of G. If H acts on G by conjugation, for x € G, we
define



1.3 Group Actions on Subsets of Groups

1. Conjugacy calss of x in H: [v]g = {hxh~'|h € H}
2. Centralizer of x in H: Cy(x) = {h € H|hah™! = x}
3. Centerof H: C(G) = {z € G|Vg € G, gzg™! = x}

&
We immediately get the conjugate version of Thm1.1
Corollary 1.1.
Let G be a group
1. For each g € G, conjugation by g induces an automorphism of G.
2. There is a homomorphism ¢ : G — Aut(G) whose kernel is C(G) 0

Proof (1) If G acts on itself by conjugation, then for each g € G, the map ¢, : G — G given

1

by ¢4(x) = gxg™" is a bijection by the proof of Thml.1. It is easy to see that ¢, is also a

homomorphism and hence an automorphism.

(2) By (1) we have ¢, € Aut(G), clearly

gEKerp & p,=id e Ve € G,grg ! =2 & g€ C(G)

Corollary 1.2.

Let G be a finite group and K a subgroup of G

1. The number of elements in the conjugacy class of v € G is [G : Cg(x)]
2. iflx1], -+, [xn](zi € G) are the distinct conjugacy classes of G, then

61 = lladll = 6+ Colai)

1.3 Group Actions on Subsets of Groups

Now we move Further for group G acts on set S of some subsets of G.

Theorem 1.6.

Let H be a subgroup of group G and let G act on the set S of all left cosets of H in
G by left translation. Then the kernel of the induced homomorphism ¢ : G — A(S) is

contained in H. v

Proof  The induced homomorphism ¢ : G — A(S) is given by ¢(g) = 74, where 74(zH) =
gxH. If g € Kerg, then 7, = idg and for Vx € G we have

Tg(xH) = goH = oH

In particular for z = e we have

gH=H=gecH



1.4 Automorphisms and Semidirect Product

Let G be a group and H a subgroup of G. If H acts on S by conjugation, for K € S, we
define the normalizer of K in H as Ny (K) = {h € HlhKh™! = K} = {h € H|hK =
Kh}

1.4 Automorphisms and Semidirect Product

Automorphisms

An automorphism in the form of conjugate is called an inner automorphism, and the

remaining automorphisms are said to be outer

Semidirect Product

Let N be a normal subgroup of G. Each element g € G defines an automorphism of N,

n — gng_1

, and this defines a homomorphism
0:G — Aut(N), g—ig|ln (1.1)

If there exists a subgroup @ of G such that G — G /N maps @ isomorphically onto G /N, then
we can reconstruct G from N, @), and the restriction of 6 to (). Indeed, an element g of GG can be

written uniquely in the form
g =nq (1.2)
If g = ng and ¢’ = n'¢/, then
99" = ngn'q’ = n(gn'q~")qq" = nby(n’) - q¢' (1.3)
Further more, 6 is the identity map iff that ), N are normal subgroups

Suppose that (), N are normal subgroups, then

g t=n"=qngn N =nnt=q¢d =nn"t=e=> 0y(n) = qng t=n
Suppose that 6 is the identity map, then
qnqi1 =n=qn=nqg = nqni1 =q

So, under the condition, the semidirect product becomes direct product.
Notes: If we have a subgroup @ = GG/N, then we can use semidirect product to construct
group G
(Dn, An)

(a) In D, all the ratation forms (R) and all the reflection forms r (R) with the relation
R'=r’=(Rr)?=e = rRr=R"!

So we have

Dp=(R)x(ry=C,xCy 6.(R")=R"



1.4 Automorphisms and Semidirect Product

(b) Notice that A,, is a normal subgroup of .S,

Cy={e,(12)} 2 S, /A, = S, = A, x Cy
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