
Chapter 1 Lie Algebra Structure

1.1 Lie Algebra Structure

Definition 1.1.

♣

For a Lie algebra g we have the following definitions

1. A subset a ⊂ g is called a (Lie) sub-algebra if a is a linear subspace and closed

under Lie braket.

2. A sub-algebra a is called Abelian if [X,Y ] = 0 for ∀X,Y ∈ a

3. A sub-algebra a is an ideal if [X,Y ] ∈ a for ∀X ∈ g and ∀Y ∈ a

4. The derived series {Dkg} ofg is defined byD1 = [g, g] andDkg = [Dk−1g, Dk−1g]

5. g is called solvable if Dkg = 0 for some k

Definition 1.2.

♣

A Lie algebra g is called

1. simple if it contains no non-trivial ideals

2. semi-simple if it contains no non-zero solvable ideals

Theorem 1.1.

♡

(1) A Lie algebra g is semi-simple ⇔ g has no non-zero Abelian ideals

(2) If a, b ⊂ g are solvable ideals, then so is c = a+ b

Proof (1) Because g is semi-simple, then all the non-zero ideal h of g is unsovlable. We

have D1h = [h, h] ̸= 0, which means that g has no non-zero Abelian ideals. Conversly, it is

straightforward to show (from the Jacobi identity) that for an ideal h of g the entire derived series

{Dkh} consists of ideals.

(2) c = a+ b clearly is an ideal and all we need to show is that it is solvable.

Definition 1.3.

♣The sum of all solvable ideals in g is called the radical rad(g) of g

Theorem 1.2.

♡

A Lie algebra g can be written as

g = rad(g)⊕s a

where a is semi-simple



1.2 The Killing Form

Theorem 1.3.

♡

A semi-simple Lie algebra g is a direct sum of simple Lie algebras gi

g =
⊕
i

gi

The direct sum refers to a direct vector space sum and the commutators [gi, gj ] = 0 for

i ̸= j.

Combining the previous two theorems we learn that every Lie algebra g can be written in

the form

g = rad(g)⊕s

(⊕
i

gi

)
(1.1)

where the gi are simple and commute with each other

Consider the direct product group G = G1 × G2 of two Lie groups G1 and G2. This is

again a Lie group with Lie algebra L(G) ∼= T1G = T1G1 ⊕ T1G2
∼= L(G1)⊕L(G2) (The sum

is direct since vectors fields on G1 commute with those on G2). Hence, a direct product of Lie

groups leads to a direct sum of the associated Lie algebras.

1.2 The Killing Form

The Killing Form

A Lie algebra carries a symmetric bi-linear form, the Killing form, which plays an important

role in analysing the structure of Lie algebras.

Definition 1.4.

♣

The symmetric bilinear form Γ : g× g → C defined by

Γ(X,Y ) = Tr[adXadY ]

is called the Killing form of g

We can use the representation matrices of the adjoint representation to compute the Killing

form γij = Γ(Xi, Xj) relative to a basis {Xi}

γij = Γ(Xi, Xj) = Tr(adXiadXj ) = (adXi)l
k(adXj )k

l = cil
kcjk

l (1.2)

Then, the Killing form of two Lie algebra elements T = viXi and S = wjXj can be written as

Γ(T, S) = γijv
iwj

Proposition 1.1.

♠

The Killing form satisfies

Γ(X, adZY ) = −Γ(adZX,Y )
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1.2 The Killing Form

Proof

Γ(X, adZY ) = Γ(X, [Z, Y ]) = Tr(adXad[Z,Y ]) = Tr(adX [adZ , adY ])

= Tr(adXadZadY )− Tr(adXadY adZ)

= Tr(adXadZadY )− Tr(adZadXadY )

= −Tr([adZ , adX ]adY ) = −Tr(ad[Z,X]adY ) = −Γ([Z,X], Y )

= −Γ(adZX,Y )

Kiling Form and Lie Algebra Structure

The Killing form Γ is called (non-degenerate) if Γ(X,Y ) = 0 for all X ∈ g implies that

Y = 0. Equivalently, Γ is non-degenerate if the matrix (Γij) is invertible. The Killing form can

be used to decide whether a Lie algebra is semi-simple.

Theorem 1.4.

♡

(1) A Lie algebra g is semi-simple iff Γ is non-degenerate.

(2) If G is compact, then the Killing form Γ on L(G) is negative semi-definite

Proof Fxxk!

Killing Form and Structure Factors

Practical applications are often formulated in terms of a basis {Xi} of the Lie algebra g.

Structure factors cijk and the Killing form γij = cik
lcjl

k. If g is semi-simple then γij is invertible

and we can also introduce its inverse γij . It is useful to translate some of the previous results

into this language.

The Jacobi identity [[Xi, Xj ], Xk] + [[Xj , Xk], Ti] + [[Xk, Xi], Xj ] = 0 together with the

commutation relations [Xi, Xj ] = cij
kXk translates into the relation

cij
lckl

n + cjk
lcil

n + cki
lcjl

n = 0 (1.3)

Of course the structure factors are anti-symmetric in the first two indices, so

cij
k + cji

k = 0 (1.4)

To get to a stronger statement, we use the Killing metric to lower and raise the last index

cijk = γlkcij
l (1.5)

and with a short calculation we can show that cijk is totally anti-symmetric.

Quadratic Casimir

If g is semi-simple we can define the quadratic Casimir operator as

C = γijXiXj (1.6)

Its relevance is that it commutes with the entire Lie algebra

3



1.3 The Cartan Subalgebras

Proposition 1.2.

♠The Casimir operator satisfies [C,X] = 0 for all X ∈ g

Proof

[C,Xk] = γij [XiXj , Xk] = γijXi[Xj , Xk] + γij [Xi, Xk]Xj

= γijcjk
lXiXl + γijcik

lXlXj = γijcik
l(XiXl +XlXi)

= γijγmncikn(XiXm +XmXi) = 0

Schur’s Lemma can be applied at the level of the algebra, so if the Lie algebra is irreducible

then C = λ1.

Physics Conventions

Assuming that the Lie group G is compact and that its algebra L(G) is simple. Form

Thm1.2 we learn that this Killing form is non-degenerate and negative semi-definite and, hence,

non-degenerate and negative definite(non-degenerate means invertible, which brings negative

semi-definite to negative definite). This means we can choose a basis {Xi} of L(G) such that

γij = −δij ⇒ cijk = γklcij
l = −cij

k (1.7)

As a result the structure constants cijk which appear in the commutation relations are completely

anti-symmetric, in the same way as their lower index counterparts cijk
Now consider an irreducible representation r : L(G) → End(V ), where d = dim(r) and

write the representation matrices of the basis as T
(r)
i = r(Ti). For the Casimir C(r) in the

representation r we have

C(r) = −δijT
(r)
i T

(r)
j = −

∑
i

(T
(r)
i )2 (1.8)

Using Schur’s Lemma we have

C(r) = −
∑
i

(T
(r)
i )2 = C(r)I (1.9)

1.3 The Cartan Subalgebras

Cartan Subalgebras

Definition 1.5.

♣

Let g be a semi-simple Lie algebra, a Cartan subalgebra h ⊂ g satisfies

1. For all H ∈ h, the adjoint actions adH can be diagonalised simultaneously, and

we can say that h is diagonalisable

2. h is maximal, if, for some X ∈ g, we have [X,H ] = 0 for all H ∈ h, then X ∈ h

Of course there are a number of things to clarify about this definition. We need to worry
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1.4 Roots

about the existence and construction of the Cartan subalgebra, and, since it turns out it is not

unique, about whether dim(h) is well-defined. But never mind, mathematicians have shown that

h always exists and that the rank, rank(g) = dim(h), is indeed well-defined.

The first thing we need to know is that h is Abelian. Since h is diagonalisable we have

0 = [adH1 , adH2 ] = ad[H1,H2] (1.10)

which force [H1,H2] = 0 because g is semi-simple.

Proposition 1.3.

♠

Let g = kC be a complex semisimple Lie algebra of a complex matrix Lie group. And let t

be any maximal commutative subalgebra of k. Define h ⊂ g by

h = tC = t+ it

Then h is a Cartan subalgebra of g

If g is a complex semisimple Lie algebra, the rank of g is the dimension of any Cartan

subalgebra. For the rest of this chapter, we assume that we have chosen a compact real form

k of g and a maximal commutative subalgebra t of k, and we consider the Cartan subalgebra

h = t+ it.

1.4 Roots

h is diagonalisable means that we can study the simultaneous eigenvectors X ∈ g which

satisfy the equation

adHX = αHX for all H ∈ h (1.11)

We can define α as a linear functional such that eats an element in h and output an eigenvalue.

αH = ⟨α|H⟩ depends linearly on H .

Definition 1.6.
(1) A non-zero linear functional α ∈ h′ is called a root of the Lie algebra g if there is a

non-zero X ∈ g such that

adHX = αHX for allH ∈ h

(2) If α is a root, then the root space gα is the eigenspace for root α

gα = {X ∈ g|adHX = αHX}

A nonzero element of gα is called a root vector for α.

(3) The set

∆ = {α ∈ h′|α is a root}

is the collection of all the roots of g.
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1.4 Roots

♣

(4) The lattice generated by ∆(that, is all integer linear combinations of elements in ∆)

is called the root lattice, ΛR.

Taking α = 0, we see that g0 is the set of all elements of g that commute with every element

of h. Since h is a maximal commutative subalgebra, we conclude that g0 = h. So the Cartan

subalgebra is sometimes written as g0 = h

Proposition 1.4.

♠Each root α, we have α ∈ it

Proof In particular, each adH ,H ∈ t, is skew self-adjoint(anti-Hermitian), which means that

adH has pure imaginary eigenvalues. It follows that if α is a root, ⟨H,α⟩ must be pure imaginary

for H ∈ t, which can only happen if α ∈ it.

Proposition 1.5.

♠

The Lie algebra can be written as

g = h⊕
⊕
α

gα (1.12)

and this is called the Cartan decomposition of g.

Proposition 1.6.

♠

1. If α ∈ h′ is a root, so is −α. Specifically, if X ∈ gα, then X∗ ∈ g−α

2. The roots ∆ span h′.

Theorem 1.5.

♡

For each root α, we can find linearly independent elements Xα ∈ gα, Yα ∈ g−α, and Hα

in h such that Hα is a multiple of α and such that

[Hα, Xα] = 2Xα

[Hα, Yα] = 2Yα

[Xα, Yα] = Hα

Furthermore, Yα can be chosen to equal X∗
α

If Xα, Yα and Hα are as in the theorem, then on the one hand, [Hα, Xα] = 2Xα, while on

the other hand, [Hα, Xα] = ⟨α|Hα⟩Xα. Thus Hα is a multiple of α, we have

⟨Hα|α⟩ = 2 ⇒ Hα =
2α

⟨α|α⟩
(1.13)

And we calls Hα a coroot associated to the root α.

Proposition 1.7.
If Xα, Yα and Hα are as in the theorem, and Yα = X∗

α. Then we can construct

Eα
1 =

i

2
Hα Eα

2 =
i

2
(Xα + Yα) Eα

2 =
1

2
(Xα − Yα)
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1.5 Structure of Cartan decomposition

♠

are linearly independent elements of k and satisfy the commutation relations

[Eα
i , E

α
j ] = ϵkijE

α
k

So, the span of Eα
1 , E

α
2 , E

α
3 is a subalgebra of k isomorphic to su(2)

Proof The commutation relations is easy to check with the commutation relations of Xα, Yα
and Hα. All we need to do is to proof Eα

1 , E
α
2 , E

α
3 ∈ k.

Never mind, in physics we only need to put a factor i in front of Lie algebra X , then
all the anti-Hermitian X will beccome Hermitian.

1.5 Structure of Cartan decomposition

Proposition 1.8.

♠

Structure of the Cartan decomposition

1. Γ|h×h is non-degenerate.

2. If α ∈ ∆, and so is −α.

3. For X ∈ gα and Y ∈ g−α, we have [X,Y ] = Γ(X,Y )Hα. One can choose X,Y

such that Γ(X,Y ) = 1.

4. dim(gα) = 1 for all α ∈ ∆.

5. Let α ∈ ∆, then from {kα|k ∈ Z}, only α and −α are roots.

6. ∆ contains a basis of h′

7. For H1,H2 ∈ h, we have Γ(H1,H2) =
∑

α∈∆ αH1αH2 .

Based on this theorem, we can now construct the Cartan-Weyl basis of g. We start by

choosing a basis {Hi}, where i = 1, · · · , r = rank(g), of the Cartan subalgebra(this is, of

course, not unique). Also, we know that the eigenspaces gα are one-dimensional for α ̸= 0, so

we can choose Eα ∈ g such that gα = span(Eα). In addition, these can be normalised so that

Γ(Eα, E−α) = 1. In summary, we have the basis

{Hi, Eα} i = 1, · · · , r and α ∈ ∆ (1.14)

We can describe α by a vector (α1, · · · , αr), where αi = αHi . Now the Killing form, relative to

the Cartan Weyl basis, then has components

γij =
∑
α∈∆

αiαj γiα = 0

γα,−α = 1 γα,β = 0

(1.15)

Now we finally reach the the commutation relations for the Cartan-Weyl basis

[Hi,Hj ] = 0 [Hi, Eα] = αiEα

[Eα, E−α] = Hα = αiHi [Eα, Eβ ] =

NαβEα+β 0 ̸= α+ β ∈ ∆

0 0 ̸= α+ β /∈ ∆

(1.16)
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1.6 Weights

where Nαβ are constants.

1.6 Weights

Weights

Definition 1.7.

♣

For a representation r : g → gl(V ), we call w ∈ h′ a weight of r if there is a non-zero

vector v ∈ V such that for all H ∈ h

r(H)v = wHv

The eigenspace of a weight w, denoted by Vw, consists of all v ∈ V which satisfy the eigen

euqation.

In other words, we are looking for common eigenvectors of the Cartan subalgebra, just as we

have done for the adjoint representation. This means that the weights of the adjoint representation

are the roots. The representation vector space V can be written as

V =
⊕
w

Vw (1.17)

where the sum runs over all weights of the representation r.

Ladder operators

How do the representation maps r(Eα) act on eigenvectors vw ∈ Vw

r(H)r(Eα)vw = (r(Eα)r(H) + [r(H), r(Eα)])vw = (wHr(Eα) + r([H,Eα]))vw

= (wHr(Eα) + r(αHEα))vw = (wH + αH)r(Eα)vw

shows that r(Eα)vw ∈ Vw+α. So, applying Eα to a vector with weight w leads to a vector with

weight w + α

Proposition 1.9.

♠

If r : g → gl(V ) is irreducible, then any two weights w1, w2 of r satisfy w1 − w2 ∈ ΛR,

that is, differences of weights are in the root lattice.

Definition 1.8.

♣

Let r : g → gl(V ) be a representation. A non-zero vector v ∈ V is called a highest

weight vector of r if r(Eα)v = 0 for all α ∈ ∆+. The weight λ of a highest weight vector

is called highest weight.
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