Chapter 1 Lie Groups and Lie Algebras

1.1 Manifolds

Given manifolds M_1, M_2, M_3 and maps $f: M_1 \to M_2, g: M_2 \to M_3$, the pullback of g under f is the map $f^*g: M_1 \to M_3$ defined by

$$f^*g = g \circ f \tag{1.1}$$

In particular, if $M_3 = \mathbb{R}$, the pullback of g under f is a function on M_1 .

Given two manifolds M_1 and M_2 with a smooth map $f: M_1 \to M_2, p \mapsto q$, the pushforward of a vector $v \in T_p M_1$ is a vector $f_*v \in T_q M_2$ defined by

$$f_*v(g) = v(g \circ f) \tag{1.2}$$

for all smooth functions $g:M_2\to\mathbb{R}$. Thus we can write

$$f_*v(g) = v(g \circ f) = v(f^*g) \tag{1.3}$$

Let ξ be a vector field on M. An integral curve of ξ is a differentiable curve $\gamma_{\xi}:[a,b]\to M$ such that

$$\partial_t \gamma_{\xi}(t) = T_t \gamma_{\xi}(\partial_t) = \xi_{\gamma(t)} \tag{1.4}$$

4

Provided an initial condition, such as $\gamma_{\xi}(0) = x$, is specified it has a unique solution. A flow combines all these solutions for different initial conditions.

The flow $\phi_t(x)$ of the vector field ξ on M is given by the unique integral curve $\gamma_{\xi}(t)$ with the initial condition $\phi_0(x) = x$. We have the following properties

- 1. $\phi_s \circ \phi_t = \phi_{s+t}$
- 2. $\partial_t \phi_t(x)|_{t=0} = \xi_x$

1.2 Lie Groups and Lie Algebras

Lie Groups

Definition 1.1.

A Lie group is a smooth manifold G which is also a group and such that the group product

$$G\times G\to G$$

and the inverse map is smooth. A connected Lie group is called an analytic group.

A group representation is a group homomorphism $\rho:G\to GL(V)$. Since GL(V) is also Lie group. Hence, we should think of representations of Lie groups G as Lie group morphisms $\rho:G\to GL(V)$ into the specific Lie group GL(V), where Lie group morphisms means that

1. ρ is a differential map, maintains the differential manifold structure

2. ρ is a group homomorphism, maintains the group structure

A vector field ξ on G is called left-invariant if TxLg(x) = gx for all x; g 2 G. Equivalently, this can also be written as g = .

Lie Algebras

Definition 1.2.

A Lie algebra is a vector space $\mathfrak g$ endowed with a bracket operation $[\cdot,\cdot]$ with the following properties

- 1. $[\cdot,\cdot]$ is bilinear
- 2. Anti-symmetry: [X, Y] = -[Y, X]
- 3. Jacobi identity: [X, [Y, Z]] + [Z, [X, Y]] + [Y, [Z, X]] = 0

Two elements X and Y of a Lie algebra $\mathfrak g$ commute if [X,Y]=0. A Lie algebra $\mathfrak g$ is commutative if $\forall X,Y\in \mathfrak g$ we have [X,Y]=0.

Representation of Lie Algebra

Let $\mathfrak g$ be a Lie algebra over k, and V a vector space over k, not necessarily finite-dimensional. A representation of a Lie algebra $\mathfrak g$ is a linear map $r:\mathfrak g\to \operatorname{End}(V)$, which maps $\mathfrak g$ into the vector space of all endomorphisms of V, $\operatorname{End}(V)$, such that

$$r([X,Y]) = [r(X),r(Y)] \\$$

for all $X,Y\in\mathfrak{g}$. The dimension of V is called the degree of r. r is said to be the trivial representation if $\dim V=1$ and r(X)=0 for all $X\in\mathfrak{g}$.

Theorem 1.1. E

ery finite dimensional Lie algebra has a faithful matrix representation.

\Diamond

Definition 1.3. A

inite-dimensional representation of a group or Lie algebra is said to be completely reducible if it is isomorphic to a direct sum of a finite number of irreducible representations.

Structure Constants

In physics applications, it is common to introduce a basis (ξ_1, \dots, ξ_n) on a Lie algebra \mathfrak{g} . The commutator $[X_i, X_j] \in \mathfrak{g}$ must be a linear combination of these basis vectors.

$$[X_i, X_j] = c_{ij}{}^k X_k \tag{1.5}$$

The constants $c_{ij}^{\ k}$ are called the structure constants of the Lie algebra \mathfrak{g} . In such basis the representation can be written as

$$r([X_i, X_j]) = [r(X_i), r(X_j)] = c_{ij}^k r(X_k)$$
(1.6)

Lie Algebra of A Lie Group

A left translation, or right translation by an element $g \in G$ is the diffeomorphism

$$L_g: G \to G \quad h \mapsto gh$$

 $R_g: G \to G \quad h \mapsto hg^{-1}$ (1.7)

Left (or right) invariant if

$$L_a^* f = f (1.8)$$

where L_g^* is the pull back of L_g . Of course, this just means that f is constant, because if g=1 we have

$$L_a^* f(1) = L_e^* f(1) = f(e)$$
(1.9)

A vector field ξ on G is left (or right) invariant if

$$(L_g)_* \xi_x = \xi_{gx}$$

 $(R_g)_* \xi_x = \xi_{xg^{-1}}$
(1.10)

for all $g,x\in G$. And if we have two left invariant vector fields ξ,η on G, then

$$(L_q)_*[\xi,\eta] = [(L_q)_*\xi,(L_q)_*\eta] = [\xi,\eta]$$
(1.11)

Theorem 1.2. L

t G be a Lie group and L(G) its Lie algebra. Then the map

$$\phi: L(G) \to T_1G, \xi_x \mapsto \xi_1$$

is a linear isomorphism, or we can say $L(G) \cong T_1G$. In particular

$$dim G = dim L(G)$$

 \Diamond

Proof Because the vector field ξ is left invariant,

$$(L_x)_*\xi_1 = \xi_x$$

the map ϕ

For all $g \in G$, we can use g^{-1} to move g to the indentity 1, and use $T_{g^{-1}}G$ to move the corresponding tangent sapce to the indentity 1. This means that the analytic structure is same everywhere on the manifold. Now we can define the Lie algebra $\mathfrak{g} = L(G)$ of a Lie group G to be the Lie algebra of left invariant vector fields on G.

1.3 The Exponential Map

Figure 1.1: Lie algebra and exponential map

The Exponential Map

Motivations: consider an integral curve with the initial condition $\gamma(0)=g$, we can differentiate it at point g to get the corresponding tangent vector

$$\left. \frac{\partial}{\partial t} \right|_{t=0} \gamma(t) = X$$

Conversly we can define the inverse mapping, the exponential map, to get a point from a tangent vector, which means that we are going to define a map from the Lie algebra into the Lie group

$$\exp: L(G) \to G \tag{1.12}$$

and by Thm 1.2 we have $L(G) \cong T_1G$, so T_1G gives us an left invariant vector field ξ on G.

Definition 1.4.

The Lie algebra L(G) gives us an left invariant vector field ξ on G with $v = \xi_1$. So we have an integral curve γ_{ξ} with initial condition $\gamma_v(0) = 1$. Then, the exponential map $\exp: L(G) \to G(or\ T_1G \to G)$ is defined by

$$\exp(v) = \gamma_v(1) \tag{1.13}$$

With the initial condition, we have

$$\gamma_v(s)\gamma_v(t) = \gamma_v(s+t)$$
 $\gamma_{tv}(s) = \gamma_v(ts)$ (1.14)

So for $\forall X \in L(G)$, we have the following properties

- 1. $\exp(tX) \exp(sX) = \exp[(s+t)X]$
- 2. $\exp(X) \exp(-X) = 1$
- 3. $\exp(0X) = 1$
- 4. $\partial_t|_{t=0} \exp(tX) = X$

4

The exponential map brings the structure fo addition in Lie algebra to group multiplication.

$$\partial_t|_{t=0} \exp(X+Y) = X+Y \tag{1.15}$$

Theorem 1.3. T

e exponential map has the following properties

- 1. The exponential map is differentiable at the origin and $T_0 \exp = id_{L(G)}$
- 2. The exponential map satisfies $F \circ \exp = \exp' \circ T_1 F$ for a group homomorphism $F: G \to G'$

Proof (1)

One way to think about Lie algebras related to the classical groups is as infinitesimal group elements. Since Lie groups are manifolds we can consider a neighborhood of the identity element 1. In this neighborhood the manifold looks like a linear space, namely, the tangent space T_1G

1.4 The Adjoint Representation

Definition 1.5.

The adjoint representation of a Lie group G is a representation $Ad: G \to \mathfrak{g}$ of the Lie group on its own Lie algebra $\mathfrak{g} \cong T_eG$ defined by

$$Ad_q(x) = gxg^{-1}$$

The map $Ad: g \mapsto Ad_g$ is the adjoint representation of G

We can check the map is a homomorphisim

$$Ad_{g_1g_2}(x) = g_1g_2x(g_1g_2)^{-1} = g_1(g_2xg_2^{-1})g_1^{-1} = Ad_{g_1}Ad_{g_2}(x)$$
(1.16)

Definition 1.6. T

e adjoint representation of Lie algebra $\mathfrak g$ is a representation $ad:\mathfrak g\to End(\mathfrak g),$ defined as

$$ad = T_1Ad$$

Theorem 1.4. I

 \mathfrak{g} is a Lie algebra and X is an element of \mathfrak{g} , the representation of \mathfrak{g} has the form

$$ad_X(Y) = [X, Y]$$

for all $Y \in \mathfrak{g}$

Suppose we choose a basis $\{X_i\}$ on L(G) and we want to work out the representation matrices of ad relative to this basis.

$$\operatorname{ad}_{X_i} X_j = [X_i, X_j] = c_{ij}{}^k X_k$$
 (1.17)

hence, the representation matrices relative to this basis are given by the structure constants

$$\left[\operatorname{ad}_{X_{i}}\right]_{j}^{k} = c_{ij}^{k} \tag{1.18}$$

 \Diamond

1.5 Lie's Theorem

Theorem 1.5.

The relation between Lie group and Lie algebra

- 1. Every finite dimensional Lie algebra $\mathfrak g$ arises from a unique (up to isomorphism) connected and simply connected Lie group G
- 2. Under this correspondence, Lie group homomorphisms $\Phi: G_1 \to G_2$ are in 1 1 correspondence with Lie algebra homomorphisms $\phi: T_1G_1 \to T_1G_2$ such that

$$\Phi(e^{tX}) = e^{t\phi(X)}$$

for all $t \in R$ and $X \in \mathfrak{g}$.

Proof The proof was given by Lie, which is too complicated for me.

1.6 Matrix Lie Groups

Many of the Lie groups in physics are matrix Lie groups. If G is a matrix group, that is, a Lie subgroup of GL(n,k) then the Lie algebra associated to the Lie group G is

$$L(G) = \{X = \partial_t|_0 \gamma(t)|\gamma(t) \text{ integral curves with initial condition } \gamma(0) = 1\}$$
 (1.19)

And we can use continuous parameter $t = (t^1, \dots, t^k)$ to discribe the matrix Lie group.

For matrix we have a useful identity

$$\det(\exp(A)) = \exp(\operatorname{Tr} A) \tag{1.20}$$

If G is a simply connected matrix Lie group with Lie algebra g, every representation of L(G) comes from a representation of G.

Vector fields

Vector fields ξ on the matrix Lie group can be written as

$$\xi(t) = \xi^{i}(t)\partial_{i} = \xi^{i}(t)\frac{\partial g_{\mu}^{\nu}}{\partial t^{i}}\frac{\partial}{\partial g_{\mu}^{\nu}} = \xi^{i}(x)\operatorname{Tr}\left(\frac{\partial g}{\partial t^{i}}\frac{\partial}{\partial g^{T}}\right)$$
(1.21)

where the last expression is just a short-hand for the one with indices in the middle

Generators

Motivation: Consider the definition of exponential maps

$$g(t) = \exp(tA) \tag{1.22}$$

So the generator of matrix Lie group G is defined by

$$T_i = \frac{\partial}{\partial t^i} \bigg|_{t=0} g(t) \tag{1.23}$$

and we can expand the group matrices near the identity as

$$g(t) = 1 + T_i t^i + O(t^2) (1.24)$$

Lie Algebra of Matrix Lie Group

We just need to find the tangent space at identity

$$\xi(0) = \xi^{i}(x) \operatorname{Tr} \left(\frac{\partial g}{\partial t^{i}} \frac{\partial}{\partial g^{T}} \right) \Big|_{t=0} = \xi^{i}(0) \operatorname{Tr} \left(T_{i} \frac{\partial}{\partial g^{T}} \right)$$
(1.25)

so we have

$$L(G) \cong T_1 G \cong \operatorname{Span}(\{T_i\}) \tag{1.26}$$

the Lie algebra of matrix Lie group is the vector space of matrices spanned by the generators.

The Matrix Left-invariant Vector Fields

The left-translation, $L_q(x) = gx$ on x is just matrix multiplication

$$(gx)_{\mu}{}^{\nu} = g_{\mu}{}^{\tau}x_{\tau}{}^{\nu} \Rightarrow (T_{x}L_{g})_{\mu\nu}{}^{\tau\sigma} = \frac{\partial(gx)_{\mu}{}^{\tau}}{\partial x_{\sigma}{}^{\nu}} = g_{\mu}{}^{\rho}\delta_{\rho}{}^{\tau}\delta_{\nu}{}^{\sigma} = g_{\mu}{}^{\tau}\delta_{\nu}{}^{\sigma}$$
(1.27)

For a left-invariant vector field ξ_g , we have $\xi_{gx}=T_xL_g\xi_x$. Consider

$$\xi^{i}(gx)\frac{\partial}{\partial t^{i}} = (T_{x}L_{g})_{\mu\nu}{}^{\tau\sigma}\xi(x)$$
(1.28)

The Matrix Exponential

To translate the exponential map into the language of generators, we can consider a left-invariant vector field $\xi^i=v^j\xi^i_j$ with the associated generator $T=v^iT_i$. The integral curve $t_i=t_i(s)$ and $\gamma_v(s)=g(t(s))$ of this left-invariant vector field satisfy the differential equation

$$\frac{dt^{i}}{ds} = v_{j}\xi_{i}^{j} \Rightarrow \frac{d\gamma_{v}}{ds} = \frac{\partial g}{\partial t^{i}}\frac{dt^{i}}{ds} = T_{i}gv^{i}$$
(1.29)

The matrix exponential can be written as

$$e^X = \sum_n \frac{1}{n!} X^n$$

1.7 Complexifications

Definition 1.7.

If V is a finite-dimensional real vector space, then the complexification of V, denoted $V_{\mathbb{C}}$, is the space of formal linear combinations

$$v_1 + iv_2$$

with $V_1, v_2 \in V$

Mathematically, we could more pedantically define $V_{\mathbb{C}}$ to be the space of ordered pairs (v_1, v_2) , but this is notationally cumbersome.

Proposition 1.1

Let $\mathfrak g$ be a finite-dimensional real Lie algebra and $\mathfrak g_{\mathbb C}$ its complexification. Then the bracket operation on $\mathfrak g$ has a unique extension to $\mathfrak g_{\mathbb C}$ that makes $\mathfrak g_{\mathbb C}$ into a complex Lie algebra. The complex Lie algebra $\mathfrak g_{\mathbb C}$ is called the complexification of the real Lie algebra $\mathfrak g$.

Proof The uniqueness of the extension is obvious, since if the bracket operation on $\mathfrak{g}_{\mathbb{C}}$ is to be bilinear, then it must be given by

$$[X_1 + iX_2, Y_1 + iY_2] = ([X_1, Y_1] - [X_2, Y_2]) + i([X_1, Y_2] + [X_2, Y_1])$$

To show existence, we have to check the 3 properties of Lie algebra. But I do not want to write it down.

Proposition 1.2.

Let $\mathfrak g$ be a real Lie algebra, $\mathfrak g_{\mathbb C}$ its complexification, and $\mathfrak h$ an arbitrary complex Lie algebra. Then every real Lie algebra homomorphism of $\mathfrak g$ into $\mathfrak h$ extends uniquely to a complex Lie algebra homomorphism of $\mathfrak g_{\mathbb C}$ into $\mathfrak h$.

Proof The unique extension is given by $\phi(X + iY) = \phi(X) + i\phi(Y)$. It is easy to check that this map is, indeed, a homomorphism of complex Lie algebras.