
Chapter 1 Lie Groups and Lie Algebras

1.1 Manifolds

Given manifolds M1,M2,M3 and maps f : M1 → M2, g : M2 → M3, the pullback of g

under f is the map f∗g : M1 → M3 defined by

f∗g = g ◦ f (1.1)

In particular, if M3 = R, the pullback of g under f is a function on M1.

Given two manifoldsM1 andM2 with a smooth map f : M1 → M2, p 7→ q, the pushforward

of a vector v ∈ TpM1 is a vector f∗v ∈ TqM2 defined by

f∗v(g) = v(g ◦ f) (1.2)

for all smooth functions g : M2 → R. Thus we can write

f∗v(g) = v(g ◦ f) = v(f∗g) (1.3)

Let ξ be a vector field on M . An integral curve of ξ is a differentiable curve γξ : [a, b] → M

such that

∂tγξ(t) = Ttγξ(∂t) = ξγ(t) (1.4)

Provided an initial condition, such as γξ(0) = x, is specified it has a unique solution. A flow

combines all these solutions for different initial conditions.

The flow ϕt(x) of the vector field ξ on M is given by the unique integral curve γξ(t) with

the initial condition ϕ0(x) = x. We have the following properties

1. ϕs ◦ ϕt = ϕs+t

2. ∂tϕt(x)|t=0 = ξx

1.2 Lie Groups and Lie Algebras

Lie Groups

Definition 1.1.

♣

A Lie group is a smooth manifold G which is also a group and such that the group product

G×G → G

and the inverse map is smooth. A connected Lie group is called an analytic group.

A group representation is a group homomorphism ρ : G → GL(V ). Since GL(V ) is also

Lie group. Hence, we should think of representations of Lie groups G as Lie group morphisms

ρ : G → GL(V ) into the specific Lie group GL(V ), where Lie group morphisms means that

1. ρ is a differential map, maintains the differential manifold structure



1.2 Lie Groups and Lie Algebras

2. ρ is a group homomorphisim, maintains the group structure

A vector field ξ on G is called left-invariant if TxLg(x) = gx for all x; g 2 G. Equivalently,

this can also be written as g = .

Lie Algebras

Definition 1.2.

♣

A Lie algebra is a vector space g endowed with a bracket operation [·, ·] with the following

properties

1. [·, ·] is bilinear

2. Anti-symmetry: [X,Y ] = −[Y,X]

3. Jacobi identity: [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0

Two elements X and Y of a Lie algebra g commute if [X,Y ] = 0. A Lie algebra g is

commutative if ∀X,Y ∈ g we have [X,Y ] = 0.

Representation of Lie Algebra

Let g be a Lie algebra over k, and V a vector space over k, not necessarily finite-dimensional.

A representation of a Lie algebra g is a linear map r : g → End(V ),which maps g into the vector

space of all endomorphisms of V , End(V ), such that

r([X,Y ]) = [r(X), r(Y )]

for all X,Y ∈ g. The dimension of V is called the degree of r. r is said to be the trivial

representation if dim V = 1 and r(X) = 0 for all X ∈ g.

Theorem 1.1. E

♥ery finite dimensional Lie algebra has a faithful matrix representation.

Definition 1.3. A

♣

inite-dimensional representation of a group or Lie algebra is said to be completely re-

ducible if it is isomorphic to a direct sum of a finite number of irreducible representations.

Structure Constants

In physics applications, it is common to introduce a basis (ξ1, · · · , ξn) on a Lie algebra g.

The commutator [Xi, Xj ] ∈ g must be a linear combination of these basis vectors.

[Xi, Xj ] = cij
kXk (1.5)

The constants cijk are called the structure constants of the Lie algebra g. In such basis the

representation can be written as

r([Xi, Xj ]) = [r(Xi), r(Xj)] = cij
kr(Xk) (1.6)
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1.3 The Exponential Map

Lie Algebra of A Lie Group

A left translation, or right translation by an element g ∈ G is the diffeomorphism

Lg : G → G h 7→ gh

Rg : G → G h 7→ hg−1
(1.7)

Left (or right) invariant if

L∗
gf = f (1.8)

where L∗
g is the pull back of Lg. Of course, this just means that f is constant, because if g = 1

we have

L∗
gf(1) = L∗

ef(1) = f(e) (1.9)

A vector field ξ on G is left (or right) invariant if

(Lg)∗ξx = ξgx

(Rg)∗ξx = ξxg−1

(1.10)

for all g, x ∈ G. And if we have two left invariant vector fields ξ, η on G, then

(Lg)∗[ξ, η] = [(Lg)∗ξ, (Lg)∗η] = [ξ, η] (1.11)

Theorem 1.2. L

♥

t G be a Lie group and L(G) its Lie algebra. Then the map

ϕ : L(G) → T1G, ξx 7→ ξ1

is a linear isomorphism, or we can say L(G) ∼= T1G. In particular

dim G = dim L(G)

Proof Because the vector field ξ is left invariant,

(Lx)∗ξ1 = ξx

the map ϕ

For all g ∈ G, we can use g−1 to move g to the indentity 1, and use Tg−1G to move the

corresponding tangent sapce to the indentity 1. This means that the analytic structure is same

everywhere on the manifold. Now we can define the Lie algebra g = L(G) of a Lie group G to

be the Lie algebra of left invariant vector fields on G.

1.3 The Exponential Map
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1.3 The Exponential Map

Figure 1.1: Lie algebra and exponential map

The Exponential Map

Motivations: consider an integral curve with the initial condition γ(0) = g, we can differ-

entiate it at point g to get the corresponding tangent vector
∂

∂t

∣∣∣∣
t=0

γ(t) = X

Conversly we can define the inverse mapping, the exponential map, to get a point from a tangent

vector, which means that we are going to define a map from the Lie algebra into the Lie group

exp : L(G) → G (1.12)

and by Thm 1.2 we have L(G) ∼= T1G, so T1G gives us an left invariant vector field ξ on G.

Definition 1.4.

♣

The Lie algebra L(G) gives us an left invariant vector field ξ on G with v = ξ1. So we

have an integral curve γξ with initial condition γv(0) = 1. Then, the exponential map

exp : L(G) → G(or T1G → G) is defined by

exp(v) = γv(1) (1.13)

With the initial condition, we have

γv(s)γv(t) = γv(s+ t) γtv(s) = γv(ts) (1.14)

So for ∀X ∈ L(G), we have the following properties

1. exp(tX) exp(sX) = exp[(s+ t)X]

2. exp(X) exp(−X) = 1

3. exp(0X) = 1

4. ∂t|t=0 exp(tX) = X
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1.4 The Adjoint Representation

The exponential map brings the structure fo addition in Lie algebra to group multiplication.

∂t|t=0 exp(X + Y ) = X + Y (1.15)

Theorem 1.3. T

♥

e exponential map has the following properties

1. The exponential map is differentiable at the origin and T0 exp = idL(G)

2. The exponential map satisfies F ◦ exp = exp′ ◦T1F for a group homomorphism

F : G → G′

Proof (1)

One way to think about Lie algebras related to the classical groups is as infinitesimal group

elements. Since Lie groups are manifolds we can consider a neighborhood of the identity element

1. In this neighborhood the manifold looks like a linear space, namely, the tangent space T1G

1.4 The Adjoint Representation

Definition 1.5.

♣

The adjoint representation of a Lie group G is a representation Ad : G → g of the Lie

group on its own Lie algebra g ∼= TeG defined by

Adg(x) = gxg−1

The map Ad : g 7→ Adg is the adjoint representation of G

We can check the map is a homomorphisim

Adg1g2(x) = g1g2x(g1g2)
−1 = g1(g2xg

−1
2 )g−1

1 = Adg1Adg2(x) (1.16)

Definition 1.6. T

♣

e adjoint representation of Lie algebra g is a representation ad : g → End(g), defined as

ad = T1Ad

Theorem 1.4. I

♥

g is a Lie algebra and X is an element of g, the representation of g has the form

adX(Y ) = [X,Y ]

for all Y ∈ g

Suppose we choose a basis {Xi} on L(G) and we want to work out the representation

matrices of ad relative to this basis.

adXiXj = [Xi, Xj ] = cij
kXk (1.17)

hence, the representation matrices relative to this basis are given by the structure constants

[adXi ]j
k = cij

k (1.18)
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1.5 Lie’s Theorem

1.5 Lie’s Theorem

Theorem 1.5.

♥

The relation between Lie group and Lie algebra

1. Every finite dimensional Lie algebra g arises from a unique (up to isomorphism)

connected and simply connected Lie group G

2. Under this correspondence, Lie group homomorphisms Φ : G1 → G2 are in 1 - 1

correspondence with Lie algebra homomorphisms ϕ : T1G1 → T1G2 such that

Φ(etX) = etϕ(X)

for all t ∈ R and X ∈ g.

Proof The proof was given by Lie, which is too complicated for me.

1.6 Matrix Lie Groups

Many of the Lie groups in physics are matrix Lie groups. If G is a matrix group, that is, a

Lie subgroup of GL(n, k) then the Lie algebra associated to the Lie group G is

L(G) = {X = ∂t|0γ(t)|γ(t) integral curves with initial condition γ(0) = 1} (1.19)

And we can use continuous parameter t = (t1, · · · , tk) to discribe the matrix Lie group.

For matrix we have a useful identity

det(exp(A)) = exp(Tr A) (1.20)

If G is a simply connected matrix Lie group with Lie algebra g, every representation of

L(G) comes from a representation of G.

Vector fields

Vector fields ξ on the matrix Lie group can be written as

ξ(t) = ξi(t)∂i = ξi(t)
∂gµ

ν

∂ti
∂

∂gµν
= ξi(x)Tr

(
∂g

∂ti
∂

∂gT

)
(1.21)

where the last expression is just a short-hand for the one with indices in the middle

Generators

Motivation: Consider the definition of exponential maps

g(t) = exp(tA) (1.22)

So the generator of matrix Lie group G is defined by

Ti =
∂

∂ti

∣∣∣∣
t=0

g(t) (1.23)

6



1.7 Complexifications

and we can expand the group matrices near the identity as

g(t) = 1 + Tit
i +O(t2) (1.24)

Lie Algebra of Matrix Lie Group

We just need to find the tangent space at identity

ξ(0) = ξi(x)Tr
(
∂g

∂ti
∂

∂gT

) ∣∣∣∣
t=0

= ξi(0)Tr
(
Ti

∂

∂gT

)
(1.25)

so we have

L(G) ∼= T1G ∼= Span ({Ti}) (1.26)

the Lie algebra of matrix Lie group is the vector space of matrices spanned by the generators.

The Matrix Left-invariant Vector Fields

The left-translation, Lg(x) = gx on x is just matrix multiplication

(gx)µ
ν = gµ

τxτ
ν ⇒ (TxLg)µν

τσ =
∂(gx)µ

τ

∂xσν
= gµ

ρδρ
τδν

σ = gµ
τδν

σ (1.27)

For a left-invariant vector field ξg, we have ξgx = TxLgξx. Consider

ξi(gx)
∂

∂ti
= (TxLg)µν

τσξ(x) (1.28)

The Matrix Exponential

To translate the exponential map into the language of generators, we can consider a left-

invariant vector field ξi = vjξij with the associated generator T = viTi. The integral curve

ti = ti(s) and γv(s) = g(t(s)) of this left-invariant vector field satisfy the differential equation
dti

ds
= vjξ

j
i ⇒ dγv

ds
=

∂g

∂ti
dti

ds
= Tigv

i (1.29)

The matrix exponential can be written as

eX =
∑
n

1

n!
Xn

1.7 Complexifications

Definition 1.7.

♣

If V is a finite-dimensional real vector space, then the complexification of V , denoted VC,

is the space of formal linear combinations

v1 + iv2

with V1, v2 ∈ V

Mathematically, we could more pedantically define VC to be the space of ordered pairs

(v1, v22), but this is notationally cumbersome.
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1.7 Complexifications

Proposition 1.1.

♠

Let g be a finite-dimensional real Lie algebra and gC its complexification. Then the bracket

operation on g has a unique extension to gC that makes gC into a complex Lie algebra.

The complex Lie algebra gC is called the complexification of the real Lie algebra g.

Proof The uniqueness of the extension is obvious, since if the bracket operation on gC is to be

bilinear, then it must be given by

[X1 + iX2, Y1 + iY2] = ([X1, Y1]− [X2, Y2]) + i([X1, Y2] + [X2, Y1])

To show existence, we have to check the 3 properties of Lie algebra. But I do not want to write

it down.

Proposition 1.2.

♠

Let g be a real Lie algebra, gC its complexification, and h an arbitrary complex Lie

algebra. Then every real Lie algebra homomorphism of g into h extends uniquely to a

complex Lie algebra homomorphism of gC into h.

Proof The unique extension is given by ϕ(X + iY ) = ϕ(X) + iϕ(Y ). It is easy to check that

this map is, indeed, a homomorphism of complex Lie algebras.
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